1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
|
import re
gentoo_unstable = ("alpha", "beta", "pre", "rc")
gentoo_types = ("alpha", "beta", "pre", "rc", "p")
def is_version_type_stable(version_type):
return version_type not in gentoo_unstable
def is_version_stable(version):
return is_version_type_stable(get_version_type(version))
def get_version_type(version):
types = []
if "9999" in version or "99999999" in version:
return "live"
for token in re.findall("[\._-]([a-zA-Z]+)", version):
if token in gentoo_types:
types.append(token)
if types:
return types[0] # TODO: consider returning all types
return "release"
# Stolen from pkg_resources, but importing it is not a good idea
component_re = re.compile(r'(\d+ | [a-z]+ | \.| -)', re.VERBOSE)
replace = \
{'pre': 'c', 'preview': 'c', '-': 'final-', 'rc': 'c', 'dev': '@'}.get
def _parse_version_parts(s):
for part in component_re.split(s):
part = replace(part, part)
if not part or part == '.':
continue
if part[:1] in '0123456789':
yield part.zfill(8) # pad for numeric comparison
else:
yield '*' + part
yield '*final' # ensure that alpha/beta/candidate are before final
def parse_version(s):
"""Convert a version string to a chronologically-sortable key
This is a rough cross between distutils' StrictVersion and LooseVersion;
if you give it versions that would work with StrictVersion, then it behaves
the same; otherwise it acts like a slightly-smarter LooseVersion. It is
*possible* to create pathological version coding schemes that will fool
this parser, but they should be very rare in practice.
The returned value will be a tuple of strings. Numeric portions of the
version are padded to 8 digits so they will compare numerically, but
without relying on how numbers compare relative to strings. Dots are
dropped, but dashes are retained. Trailing zeros between alpha segments
or dashes are suppressed, so that e.g. "2.4.0" is considered the same as
"2.4". Alphanumeric parts are lower-cased.
The algorithm assumes that strings like "-" and any alpha string that
alphabetically follows "final" represents a "patch level". So, "2.4-1"
is assumed to be a branch or patch of "2.4", and therefore "2.4.1" is
considered newer than "2.4-1", which in turn is newer than "2.4".
Strings like "a", "b", "c", "alpha", "beta", "candidate" and so on (that
come before "final" alphabetically) are assumed to be pre-release versions,
so that the version "2.4" is considered newer than "2.4a1".
Finally, to handle miscellaneous cases, the strings "pre", "preview", and
"rc" are treated as if they were "c", i.e. as though they were release
candidates, and therefore are not as new as a version string that does not
contain them, and "dev" is replaced with an '@' so that it sorts lower than
than any other pre-release tag.
"""
parts = []
for part in _parse_version_parts(s.lower()):
if part.startswith('*'):
if part < '*final': # remove '-' before a prerelease tag
while parts and parts[-1] == '*final-':
parts.pop()
# remove trailing zeros from each series of numeric parts
while parts and parts[-1] == '00000000':
parts.pop()
parts.append(part)
return tuple(parts)
|