summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'tesseract/src/textord/textlineprojection.cpp')
-rw-r--r--tesseract/src/textord/textlineprojection.cpp779
1 files changed, 779 insertions, 0 deletions
diff --git a/tesseract/src/textord/textlineprojection.cpp b/tesseract/src/textord/textlineprojection.cpp
new file mode 100644
index 00000000..e52abaa0
--- /dev/null
+++ b/tesseract/src/textord/textlineprojection.cpp
@@ -0,0 +1,779 @@
+// Copyright 2011 Google Inc. All Rights Reserved.
+// Author: rays@google.com (Ray Smith)
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+// http://www.apache.org/licenses/LICENSE-2.0
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#ifdef HAVE_CONFIG_H
+#include "config_auto.h"
+#endif
+
+#include "textlineprojection.h"
+#include "allheaders.h"
+#include "bbgrid.h" // Base class.
+#include "blobbox.h" // BlobNeighourDir.
+#include "blobs.h"
+#include "colpartition.h"
+#include "normalis.h"
+
+#include <algorithm>
+
+// Padding factor to use on definitely oriented blobs
+const int kOrientedPadFactor = 8;
+// Padding factor to use on not definitely oriented blobs.
+const int kDefaultPadFactor = 2;
+// Penalty factor for going away from the line center.
+const int kWrongWayPenalty = 4;
+// Ratio between parallel gap and perpendicular gap used to measure total
+// distance of a box from a target box in curved textline space.
+// parallel-gap is treated more favorably by this factor to allow catching
+// quotes and elipsis at the end of textlines.
+const int kParaPerpDistRatio = 4;
+// Multiple of scale_factor_ that the inter-line gap must be before we start
+// padding the increment box perpendicular to the text line.
+const int kMinLineSpacingFactor = 4;
+// Maximum tab-stop overrun for horizontal padding, in projection pixels.
+const int kMaxTabStopOverrun = 6;
+
+namespace tesseract {
+
+TextlineProjection::TextlineProjection(int resolution)
+ : x_origin_(0), y_origin_(0), pix_(nullptr) {
+ // The projection map should be about 100 ppi, whatever the input.
+ scale_factor_ = IntCastRounded(resolution / 100.0);
+ if (scale_factor_ < 1) scale_factor_ = 1;
+}
+TextlineProjection::~TextlineProjection() {
+ pixDestroy(&pix_);
+}
+
+// Build the projection profile given the input_block containing lists of
+// blobs, a rotation to convert to image coords,
+// and a full-resolution nontext_map, marking out areas to avoid.
+// During construction, we have the following assumptions:
+// The rotation is a multiple of 90 degrees, ie no deskew yet.
+// The blobs have had their left and right rules set to also limit
+// the range of projection.
+void TextlineProjection::ConstructProjection(TO_BLOCK* input_block,
+ const FCOORD& rotation,
+ Pix* nontext_map) {
+ pixDestroy(&pix_);
+ TBOX image_box(0, 0, pixGetWidth(nontext_map), pixGetHeight(nontext_map));
+ x_origin_ = 0;
+ y_origin_ = image_box.height();
+ int width = (image_box.width() + scale_factor_ - 1) / scale_factor_;
+ int height = (image_box.height() + scale_factor_ - 1) / scale_factor_;
+
+ pix_ = pixCreate(width, height, 8);
+ ProjectBlobs(&input_block->blobs, rotation, image_box, nontext_map);
+ ProjectBlobs(&input_block->large_blobs, rotation, image_box, nontext_map);
+ Pix* final_pix = pixBlockconv(pix_, 1, 1);
+// Pix* final_pix = pixBlockconv(pix_, 2, 2);
+ pixDestroy(&pix_);
+ pix_ = final_pix;
+}
+
+#ifndef GRAPHICS_DISABLED
+
+// Display the blobs in the window colored according to textline quality.
+void TextlineProjection::PlotGradedBlobs(BLOBNBOX_LIST* blobs,
+ ScrollView* win) {
+ BLOBNBOX_IT it(blobs);
+ for (it.mark_cycle_pt(); !it.cycled_list(); it.forward()) {
+ BLOBNBOX* blob = it.data();
+ const TBOX& box = blob->bounding_box();
+ bool bad_box = BoxOutOfHTextline(box, nullptr, false);
+ if (blob->UniquelyVertical())
+ win->Pen(ScrollView::YELLOW);
+ else
+ win->Pen(bad_box ? ScrollView::RED : ScrollView::BLUE);
+ win->Rectangle(box.left(), box.bottom(), box.right(), box.top());
+ }
+ win->Update();
+}
+
+#endif // !GRAPHICS_DISABLED
+
+// Moves blobs that look like they don't sit well on a textline from the
+// input blobs list to the output small_blobs list.
+// This gets them away from initial textline finding to stop diacritics
+// from forming incorrect textlines. (Introduced mainly to fix Thai.)
+void TextlineProjection::MoveNonTextlineBlobs(
+ BLOBNBOX_LIST* blobs, BLOBNBOX_LIST* small_blobs) const {
+ BLOBNBOX_IT it(blobs);
+ BLOBNBOX_IT small_it(small_blobs);
+ for (it.mark_cycle_pt(); !it.cycled_list(); it.forward()) {
+ BLOBNBOX* blob = it.data();
+ const TBOX& box = blob->bounding_box();
+ bool debug = AlignedBlob::WithinTestRegion(2, box.left(),
+ box.bottom());
+ if (BoxOutOfHTextline(box, nullptr, debug) && !blob->UniquelyVertical()) {
+ blob->ClearNeighbours();
+ small_it.add_to_end(it.extract());
+ }
+ }
+}
+
+#ifndef GRAPHICS_DISABLED
+
+// Create a window and display the projection in it.
+void TextlineProjection::DisplayProjection() const {
+ int width = pixGetWidth(pix_);
+ int height = pixGetHeight(pix_);
+ Pix* pixc = pixCreate(width, height, 32);
+ int src_wpl = pixGetWpl(pix_);
+ int col_wpl = pixGetWpl(pixc);
+ uint32_t* src_data = pixGetData(pix_);
+ uint32_t* col_data = pixGetData(pixc);
+ for (int y = 0; y < height; ++y, src_data += src_wpl, col_data += col_wpl) {
+ for (int x = 0; x < width; ++x) {
+ int pixel = GET_DATA_BYTE(src_data, x);
+ l_uint32 result;
+ if (pixel <= 17)
+ composeRGBPixel(0, 0, pixel * 15, &result);
+ else if (pixel <= 145)
+ composeRGBPixel(0, (pixel - 17) * 2, 255, &result);
+ else
+ composeRGBPixel((pixel - 145) * 2, 255, 255, &result);
+ col_data[x] = result;
+ }
+ }
+ auto* win = new ScrollView("Projection", 0, 0,
+ width, height, width, height);
+ win->Image(pixc, 0, 0);
+ win->Update();
+ pixDestroy(&pixc);
+}
+
+#endif // !GRAPHICS_DISABLED
+
+// Compute the distance of the box from the partition using curved projection
+// space. As DistanceOfBoxFromBox, except that the direction is taken from
+// the ColPartition and the median bounds of the ColPartition are used as
+// the to_box.
+int TextlineProjection::DistanceOfBoxFromPartition(const TBOX& box,
+ const ColPartition& part,
+ const DENORM* denorm,
+ bool debug) const {
+ // Compute a partition box that uses the median top/bottom of the blobs
+ // within and median left/right for vertical.
+ TBOX part_box = part.bounding_box();
+ if (part.IsHorizontalType()) {
+ part_box.set_top(part.median_top());
+ part_box.set_bottom(part.median_bottom());
+ } else {
+ part_box.set_left(part.median_left());
+ part_box.set_right(part.median_right());
+ }
+ // Now use DistanceOfBoxFromBox to make the actual calculation.
+ return DistanceOfBoxFromBox(box, part_box, part.IsHorizontalType(),
+ denorm, debug);
+}
+
+// Compute the distance from the from_box to the to_box using curved
+// projection space. Separation that involves a decrease in projection
+// density (moving from the from_box to the to_box) is weighted more heavily
+// than constant density, and an increase is weighted less.
+// If horizontal_textline is true, then curved space is used vertically,
+// as for a diacritic on the edge of a textline.
+// The projection uses original image coords, so denorm is used to get
+// back to the image coords from box/part space.
+// How the calculation works: Think of a diacritic near a textline.
+// Distance is measured from the far side of the from_box to the near side of
+// the to_box. Shown is the horizontal textline case.
+// |------^-----|
+// | from | box |
+// |------|-----|
+// perpendicular |
+// <------v-------->|--------------------|
+// parallel | to box |
+// |--------------------|
+// Perpendicular distance uses "curved space" See VerticalDistance below.
+// Parallel distance is linear.
+// Result is perpendicular_gap + parallel_gap / kParaPerpDistRatio.
+int TextlineProjection::DistanceOfBoxFromBox(const TBOX& from_box,
+ const TBOX& to_box,
+ bool horizontal_textline,
+ const DENORM* denorm,
+ bool debug) const {
+ // The parallel_gap is the horizontal gap between a horizontal textline and
+ // the box. Analogous for vertical.
+ int parallel_gap = 0;
+ // start_pt is the box end of the line to be modified for curved space.
+ TPOINT start_pt;
+ // end_pt is the partition end of the line to be modified for curved space.
+ TPOINT end_pt;
+ if (horizontal_textline) {
+ parallel_gap = from_box.x_gap(to_box) + from_box.width();
+ start_pt.x = (from_box.left() + from_box.right()) / 2;
+ end_pt.x = start_pt.x;
+ if (from_box.top() - to_box.top() >= to_box.bottom() - from_box.bottom()) {
+ start_pt.y = from_box.top();
+ end_pt.y = std::min(to_box.top(), start_pt.y);
+ } else {
+ start_pt.y = from_box.bottom();
+ end_pt.y = std::max(to_box.bottom(), start_pt.y);
+ }
+ } else {
+ parallel_gap = from_box.y_gap(to_box) + from_box.height();
+ if (from_box.right() - to_box.right() >= to_box.left() - from_box.left()) {
+ start_pt.x = from_box.right();
+ end_pt.x = std::min(to_box.right(), start_pt.x);
+ } else {
+ start_pt.x = from_box.left();
+ end_pt.x = std::max(to_box.left(), start_pt.x);
+ }
+ start_pt.y = (from_box.bottom() + from_box.top()) / 2;
+ end_pt.y = start_pt.y;
+ }
+ // The perpendicular gap is the max vertical distance gap out of:
+ // top of from_box to to_box top and bottom of from_box to to_box bottom.
+ // This value is then modified for curved projection space.
+ // Analogous for vertical.
+ int perpendicular_gap = 0;
+ // If start_pt == end_pt, then the from_box lies entirely within the to_box
+ // (in the perpendicular direction), so we don't need to calculate the
+ // perpendicular_gap.
+ if (start_pt.x != end_pt.x || start_pt.y != end_pt.y) {
+ if (denorm != nullptr) {
+ // Denormalize the start and end.
+ denorm->DenormTransform(nullptr, start_pt, &start_pt);
+ denorm->DenormTransform(nullptr, end_pt, &end_pt);
+ }
+ if (abs(start_pt.y - end_pt.y) >= abs(start_pt.x - end_pt.x)) {
+ perpendicular_gap = VerticalDistance(debug, start_pt.x, start_pt.y,
+ end_pt.y);
+ } else {
+ perpendicular_gap = HorizontalDistance(debug, start_pt.x, end_pt.x,
+ start_pt.y);
+ }
+ }
+ // The parallel_gap weighs less than the perpendicular_gap.
+ return perpendicular_gap + parallel_gap / kParaPerpDistRatio;
+}
+
+// Compute the distance between (x, y1) and (x, y2) using the rule that
+// a decrease in textline density is weighted more heavily than an increase.
+// The coordinates are in source image space, ie processed by any denorm
+// already, but not yet scaled by scale_factor_.
+// Going from the outside of a textline to the inside should measure much
+// less distance than going from the inside of a textline to the outside.
+// How it works:
+// An increase is cheap (getting closer to a textline).
+// Constant costs unity.
+// A decrease is expensive (getting further from a textline).
+// Pixels in projection map Counted distance
+// 2
+// 3 1/x
+// 3 1
+// 2 x
+// 5 1/x
+// 7 1/x
+// Total: 1 + x + 3/x where x = kWrongWayPenalty.
+int TextlineProjection::VerticalDistance(bool debug, int x,
+ int y1, int y2) const {
+ x = ImageXToProjectionX(x);
+ y1 = ImageYToProjectionY(y1);
+ y2 = ImageYToProjectionY(y2);
+ if (y1 == y2) return 0;
+ int wpl = pixGetWpl(pix_);
+ int step = y1 < y2 ? 1 : -1;
+ uint32_t* data = pixGetData(pix_) + y1 * wpl;
+ wpl *= step;
+ int prev_pixel = GET_DATA_BYTE(data, x);
+ int distance = 0;
+ int right_way_steps = 0;
+ for (int y = y1; y != y2; y += step) {
+ data += wpl;
+ int pixel = GET_DATA_BYTE(data, x);
+ if (debug)
+ tprintf("At (%d,%d), pix = %d, prev=%d\n",
+ x, y + step, pixel, prev_pixel);
+ if (pixel < prev_pixel)
+ distance += kWrongWayPenalty;
+ else if (pixel > prev_pixel)
+ ++right_way_steps;
+ else
+ ++distance;
+ prev_pixel = pixel;
+ }
+ return distance * scale_factor_ +
+ right_way_steps * scale_factor_ / kWrongWayPenalty;
+}
+
+// Compute the distance between (x1, y) and (x2, y) using the rule that
+// a decrease in textline density is weighted more heavily than an increase.
+int TextlineProjection::HorizontalDistance(bool debug, int x1, int x2,
+ int y) const {
+ x1 = ImageXToProjectionX(x1);
+ x2 = ImageXToProjectionX(x2);
+ y = ImageYToProjectionY(y);
+ if (x1 == x2) return 0;
+ int wpl = pixGetWpl(pix_);
+ int step = x1 < x2 ? 1 : -1;
+ uint32_t* data = pixGetData(pix_) + y * wpl;
+ int prev_pixel = GET_DATA_BYTE(data, x1);
+ int distance = 0;
+ int right_way_steps = 0;
+ for (int x = x1; x != x2; x += step) {
+ int pixel = GET_DATA_BYTE(data, x + step);
+ if (debug)
+ tprintf("At (%d,%d), pix = %d, prev=%d\n",
+ x + step, y, pixel, prev_pixel);
+ if (pixel < prev_pixel)
+ distance += kWrongWayPenalty;
+ else if (pixel > prev_pixel)
+ ++right_way_steps;
+ else
+ ++distance;
+ prev_pixel = pixel;
+ }
+ return distance * scale_factor_ +
+ right_way_steps * scale_factor_ / kWrongWayPenalty;
+}
+
+// Returns true if the blob appears to be outside of a textline.
+// Such blobs are potentially diacritics (even if large in Thai) and should
+// be kept away from initial textline finding.
+bool TextlineProjection::BoxOutOfHTextline(const TBOX& box,
+ const DENORM* denorm,
+ bool debug) const {
+ int grad1 = 0;
+ int grad2 = 0;
+ EvaluateBoxInternal(box, denorm, debug, &grad1, &grad2, nullptr, nullptr);
+ int worst_result = std::min(grad1, grad2);
+ int total_result = grad1 + grad2;
+ if (total_result >= 6) return false; // Strongly in textline.
+ // Medium strength: if either gradient is negative, it is likely outside
+ // the body of the textline.
+ if (worst_result < 0)
+ return true;
+ return false;
+}
+
+// Evaluates the textlineiness of a ColPartition. Uses EvaluateBox below,
+// but uses the median top/bottom for horizontal and median left/right for
+// vertical instead of the bounding box edges.
+// Evaluates for both horizontal and vertical and returns the best result,
+// with a positive value for horizontal and a negative value for vertical.
+int TextlineProjection::EvaluateColPartition(const ColPartition& part,
+ const DENORM* denorm,
+ bool debug) const {
+ if (part.IsSingleton())
+ return EvaluateBox(part.bounding_box(), denorm, debug);
+ // Test vertical orientation.
+ TBOX box = part.bounding_box();
+ // Use the partition median for left/right.
+ box.set_left(part.median_left());
+ box.set_right(part.median_right());
+ int vresult = EvaluateBox(box, denorm, debug);
+
+ // Test horizontal orientation.
+ box = part.bounding_box();
+ // Use the partition median for top/bottom.
+ box.set_top(part.median_top());
+ box.set_bottom(part.median_bottom());
+ int hresult = EvaluateBox(box, denorm, debug);
+ if (debug) {
+ tprintf("Partition hresult=%d, vresult=%d from:", hresult, vresult);
+ part.bounding_box().print();
+ part.Print();
+ }
+ return hresult >= -vresult ? hresult : vresult;
+}
+
+// Computes the mean projection gradients over the horizontal and vertical
+// edges of the box:
+// -h-h-h-h-h-h
+// |------------| mean=htop -v|+v--------+v|-v
+// |+h+h+h+h+h+h| -v|+v +v|-v
+// | | -v|+v +v|-v
+// | box | -v|+v box +v|-v
+// | | -v|+v +v|-v
+// |+h+h+h+h+h+h| -v|+v +v|-v
+// |------------| mean=hbot -v|+v--------+v|-v
+// -h-h-h-h-h-h
+// mean=vleft mean=vright
+//
+// Returns MAX(htop,hbot) - MAX(vleft,vright), which is a positive number
+// for a horizontal textline, a negative number for a vertical textline,
+// and near zero for undecided. Undecided is most likely non-text.
+// All the gradients are truncated to remain non-negative, since negative
+// horizontal gradients don't give any indication of being vertical and
+// vice versa.
+// Additional complexity: The coordinates have to be transformed to original
+// image coordinates with denorm (if not null), scaled to match the projection
+// pix, and THEN step out 2 pixels each way from the edge to compute the
+// gradient, and tries 3 positions, each measuring the gradient over a
+// 4-pixel spread: (+3/-1), (+2/-2), (+1/-3). This complexity is handled by
+// several layers of helpers below.
+int TextlineProjection::EvaluateBox(const TBOX& box, const DENORM* denorm,
+ bool debug) const {
+ return EvaluateBoxInternal(box, denorm, debug, nullptr, nullptr, nullptr, nullptr);
+}
+
+// Internal version of EvaluateBox returns the unclipped gradients as well
+// as the result of EvaluateBox.
+// hgrad1 and hgrad2 are the gradients for the horizontal textline.
+int TextlineProjection::EvaluateBoxInternal(const TBOX& box,
+ const DENORM* denorm, bool debug,
+ int* hgrad1, int* hgrad2,
+ int* vgrad1, int* vgrad2) const {
+ int top_gradient = BestMeanGradientInRow(denorm, box.left(), box.right(),
+ box.top(), true);
+ int bottom_gradient = -BestMeanGradientInRow(denorm, box.left(), box.right(),
+ box.bottom(), false);
+ int left_gradient = BestMeanGradientInColumn(denorm, box.left(), box.bottom(),
+ box.top(), true);
+ int right_gradient = -BestMeanGradientInColumn(denorm, box.right(),
+ box.bottom(), box.top(),
+ false);
+ int top_clipped = std::max(top_gradient, 0);
+ int bottom_clipped = std::max(bottom_gradient, 0);
+ int left_clipped = std::max(left_gradient, 0);
+ int right_clipped = std::max(right_gradient, 0);
+ if (debug) {
+ tprintf("Gradients: top = %d, bottom = %d, left= %d, right= %d for box:",
+ top_gradient, bottom_gradient, left_gradient, right_gradient);
+ box.print();
+ }
+ int result = std::max(top_clipped, bottom_clipped) -
+ std::max(left_clipped, right_clipped);
+ if (hgrad1 != nullptr && hgrad2 != nullptr) {
+ *hgrad1 = top_gradient;
+ *hgrad2 = bottom_gradient;
+ }
+ if (vgrad1 != nullptr && vgrad2 != nullptr) {
+ *vgrad1 = left_gradient;
+ *vgrad2 = right_gradient;
+ }
+ return result;
+}
+
+// Helper returns the mean gradient value for the horizontal row at the given
+// y, (in the external coordinates) by subtracting the mean of the transformed
+// row 2 pixels above from the mean of the transformed row 2 pixels below.
+// This gives a positive value for a good top edge and negative for bottom.
+// Returns the best result out of +2/-2, +3/-1, +1/-3 pixels from the edge.
+int TextlineProjection::BestMeanGradientInRow(const DENORM* denorm,
+ int16_t min_x, int16_t max_x, int16_t y,
+ bool best_is_max) const {
+ TPOINT start_pt(min_x, y);
+ TPOINT end_pt(max_x, y);
+ int upper = MeanPixelsInLineSegment(denorm, -2, start_pt, end_pt);
+ int lower = MeanPixelsInLineSegment(denorm, 2, start_pt, end_pt);
+ int best_gradient = lower - upper;
+ upper = MeanPixelsInLineSegment(denorm, -1, start_pt, end_pt);
+ lower = MeanPixelsInLineSegment(denorm, 3, start_pt, end_pt);
+ int gradient = lower - upper;
+ if ((gradient > best_gradient) == best_is_max)
+ best_gradient = gradient;
+ upper = MeanPixelsInLineSegment(denorm, -3, start_pt, end_pt);
+ lower = MeanPixelsInLineSegment(denorm, 1, start_pt, end_pt);
+ gradient = lower - upper;
+ if ((gradient > best_gradient) == best_is_max)
+ best_gradient = gradient;
+ return best_gradient;
+}
+
+// Helper returns the mean gradient value for the vertical column at the
+// given x, (in the external coordinates) by subtracting the mean of the
+// transformed column 2 pixels left from the mean of the transformed column
+// 2 pixels to the right.
+// This gives a positive value for a good left edge and negative for right.
+// Returns the best result out of +2/-2, +3/-1, +1/-3 pixels from the edge.
+int TextlineProjection::BestMeanGradientInColumn(const DENORM* denorm, int16_t x,
+ int16_t min_y, int16_t max_y,
+ bool best_is_max) const {
+ TPOINT start_pt(x, min_y);
+ TPOINT end_pt(x, max_y);
+ int left = MeanPixelsInLineSegment(denorm, -2, start_pt, end_pt);
+ int right = MeanPixelsInLineSegment(denorm, 2, start_pt, end_pt);
+ int best_gradient = right - left;
+ left = MeanPixelsInLineSegment(denorm, -1, start_pt, end_pt);
+ right = MeanPixelsInLineSegment(denorm, 3, start_pt, end_pt);
+ int gradient = right - left;
+ if ((gradient > best_gradient) == best_is_max)
+ best_gradient = gradient;
+ left = MeanPixelsInLineSegment(denorm, -3, start_pt, end_pt);
+ right = MeanPixelsInLineSegment(denorm, 1, start_pt, end_pt);
+ gradient = right - left;
+ if ((gradient > best_gradient) == best_is_max)
+ best_gradient = gradient;
+ return best_gradient;
+}
+
+// Helper returns the mean pixel value over the line between the start_pt and
+// end_pt (inclusive), but shifted perpendicular to the line in the projection
+// image by offset pixels. For simplicity, it is assumed that the vector is
+// either nearly horizontal or nearly vertical. It works on skewed textlines!
+// The end points are in external coordinates, and will be denormalized with
+// the denorm if not nullptr before further conversion to pix coordinates.
+// After all the conversions, the offset is added to the direction
+// perpendicular to the line direction. The offset is thus in projection image
+// coordinates, which allows the caller to get a guaranteed displacement
+// between pixels used to calculate gradients.
+int TextlineProjection::MeanPixelsInLineSegment(const DENORM* denorm,
+ int offset,
+ TPOINT start_pt,
+ TPOINT end_pt) const {
+ TransformToPixCoords(denorm, &start_pt);
+ TransformToPixCoords(denorm, &end_pt);
+ TruncateToImageBounds(&start_pt);
+ TruncateToImageBounds(&end_pt);
+ int wpl = pixGetWpl(pix_);
+ uint32_t* data = pixGetData(pix_);
+ int total = 0;
+ int count = 0;
+ int x_delta = end_pt.x - start_pt.x;
+ int y_delta = end_pt.y - start_pt.y;
+ if (abs(x_delta) >= abs(y_delta)) {
+ if (x_delta == 0)
+ return 0;
+ // Horizontal line. Add the offset vertically.
+ int x_step = x_delta > 0 ? 1 : -1;
+ // Correct offset for rotation, keeping it anti-clockwise of the delta.
+ offset *= x_step;
+ start_pt.y += offset;
+ end_pt.y += offset;
+ TruncateToImageBounds(&start_pt);
+ TruncateToImageBounds(&end_pt);
+ x_delta = end_pt.x - start_pt.x;
+ y_delta = end_pt.y - start_pt.y;
+ count = x_delta * x_step + 1;
+ for (int x = start_pt.x; x != end_pt.x; x += x_step) {
+ int y = start_pt.y + DivRounded(y_delta * (x - start_pt.x), x_delta);
+ total += GET_DATA_BYTE(data + wpl * y, x);
+ }
+ } else {
+ // Vertical line. Add the offset horizontally.
+ int y_step = y_delta > 0 ? 1 : -1;
+ // Correct offset for rotation, keeping it anti-clockwise of the delta.
+ // Pix holds the image with y=0 at the top, so the offset is negated.
+ offset *= -y_step;
+ start_pt.x += offset;
+ end_pt.x += offset;
+ TruncateToImageBounds(&start_pt);
+ TruncateToImageBounds(&end_pt);
+ x_delta = end_pt.x - start_pt.x;
+ y_delta = end_pt.y - start_pt.y;
+ count = y_delta * y_step + 1;
+ for (int y = start_pt.y; y != end_pt.y; y += y_step) {
+ int x = start_pt.x + DivRounded(x_delta * (y - start_pt.y), y_delta);
+ total += GET_DATA_BYTE(data + wpl * y, x);
+ }
+ }
+ return DivRounded(total, count);
+}
+
+// Given an input pix, and a box, the sides of the box are shrunk inwards until
+// they bound any black pixels found within the original box.
+// The function converts between tesseract coords and the pix coords assuming
+// that this pix is full resolution equal in size to the original image.
+// Returns an empty box if there are no black pixels in the source box.
+static TBOX BoundsWithinBox(Pix* pix, const TBOX& box) {
+ int im_height = pixGetHeight(pix);
+ Box* input_box = boxCreate(box.left(), im_height - box.top(),
+ box.width(), box.height());
+ Box* output_box = nullptr;
+ pixClipBoxToForeground(pix, input_box, nullptr, &output_box);
+ TBOX result_box;
+ if (output_box != nullptr) {
+ l_int32 x, y, width, height;
+ boxGetGeometry(output_box, &x, &y, &width, &height);
+ result_box.set_left(x);
+ result_box.set_right(x + width);
+ result_box.set_top(im_height - y);
+ result_box.set_bottom(result_box.top() - height);
+ boxDestroy(&output_box);
+ }
+ boxDestroy(&input_box);
+ return result_box;
+}
+
+// Splits the given box in half at x_middle or y_middle according to split_on_x
+// and checks for nontext_map pixels in each half. Reduces the bbox so that it
+// still includes the middle point, but does not touch any fg pixels in
+// nontext_map. An empty box may be returned if there is no such box.
+static void TruncateBoxToMissNonText(int x_middle, int y_middle,
+ bool split_on_x, Pix* nontext_map,
+ TBOX* bbox) {
+ TBOX box1(*bbox);
+ TBOX box2(*bbox);
+ TBOX im_box;
+ if (split_on_x) {
+ box1.set_right(x_middle);
+ im_box = BoundsWithinBox(nontext_map, box1);
+ if (!im_box.null_box()) box1.set_left(im_box.right());
+ box2.set_left(x_middle);
+ im_box = BoundsWithinBox(nontext_map, box2);
+ if (!im_box.null_box()) box2.set_right(im_box.left());
+ } else {
+ box1.set_bottom(y_middle);
+ im_box = BoundsWithinBox(nontext_map, box1);
+ if (!im_box.null_box()) box1.set_top(im_box.bottom());
+ box2.set_top(y_middle);
+ im_box = BoundsWithinBox(nontext_map, box2);
+ if (!im_box.null_box()) box2.set_bottom(im_box.top());
+ }
+ box1 += box2;
+ *bbox = box1;
+}
+
+
+// Helper function to add 1 to a rectangle in source image coords to the
+// internal projection pix_.
+void TextlineProjection::IncrementRectangle8Bit(const TBOX& box) {
+ int scaled_left = ImageXToProjectionX(box.left());
+ int scaled_top = ImageYToProjectionY(box.top());
+ int scaled_right = ImageXToProjectionX(box.right());
+ int scaled_bottom = ImageYToProjectionY(box.bottom());
+ int wpl = pixGetWpl(pix_);
+ uint32_t* data = pixGetData(pix_) + scaled_top * wpl;
+ for (int y = scaled_top; y <= scaled_bottom; ++y) {
+ for (int x = scaled_left; x <= scaled_right; ++x) {
+ int pixel = GET_DATA_BYTE(data, x);
+ if (pixel < 255)
+ SET_DATA_BYTE(data, x, pixel + 1);
+ }
+ data += wpl;
+ }
+}
+
+// Inserts a list of blobs into the projection.
+// Rotation is a multiple of 90 degrees to get from blob coords to
+// nontext_map coords, nontext_map_box is the bounds of the nontext_map.
+// Blobs are spread horizontally or vertically according to their internal
+// flags, but the spreading is truncated by set pixels in the nontext_map
+// and also by the horizontal rule line limits on the blobs.
+void TextlineProjection::ProjectBlobs(BLOBNBOX_LIST* blobs,
+ const FCOORD& rotation,
+ const TBOX& nontext_map_box,
+ Pix* nontext_map) {
+ BLOBNBOX_IT blob_it(blobs);
+ for (blob_it.mark_cycle_pt(); !blob_it.cycled_list(); blob_it.forward()) {
+ BLOBNBOX* blob = blob_it.data();
+ TBOX bbox = blob->bounding_box();
+ ICOORD middle((bbox.left() + bbox.right()) / 2,
+ (bbox.bottom() + bbox.top()) / 2);
+ bool spreading_horizontally = PadBlobBox(blob, &bbox);
+ // Rotate to match the nontext_map.
+ bbox.rotate(rotation);
+ middle.rotate(rotation);
+ if (rotation.x() == 0.0f)
+ spreading_horizontally = !spreading_horizontally;
+ // Clip to the image before applying the increments.
+ bbox &= nontext_map_box; // This is in-place box intersection.
+ // Check for image pixels before spreading.
+ TruncateBoxToMissNonText(middle.x(), middle.y(), spreading_horizontally,
+ nontext_map, &bbox);
+ if (bbox.area() > 0) {
+ IncrementRectangle8Bit(bbox);
+ }
+ }
+}
+
+// Pads the bounding box of the given blob according to whether it is on
+// a horizontal or vertical text line, taking into account tab-stops near
+// the blob. Returns true if padding was in the horizontal direction.
+bool TextlineProjection::PadBlobBox(BLOBNBOX* blob, TBOX* bbox) {
+ // Determine which direction to spread.
+ // If text is well spaced out, it can be useful to pad perpendicular to
+ // the textline direction, so as to ensure diacritics get absorbed
+ // correctly, but if the text is tightly spaced, this will destroy the
+ // blank space between textlines in the projection map, and that would
+ // be very bad.
+ int pad_limit = scale_factor_ * kMinLineSpacingFactor;
+ int xpad = 0;
+ int ypad = 0;
+ bool padding_horizontally = false;
+ if (blob->UniquelyHorizontal()) {
+ xpad = bbox->height() * kOrientedPadFactor;
+ padding_horizontally = true;
+ // If the text appears to be very well spaced, pad the other direction by a
+ // single pixel in the projection profile space to help join diacritics to
+ // the textline.
+ if ((blob->neighbour(BND_ABOVE) == nullptr ||
+ bbox->y_gap(blob->neighbour(BND_ABOVE)->bounding_box()) > pad_limit) &&
+ (blob->neighbour(BND_BELOW) == nullptr ||
+ bbox->y_gap(blob->neighbour(BND_BELOW)->bounding_box()) > pad_limit)) {
+ ypad = scale_factor_;
+ }
+ } else if (blob->UniquelyVertical()) {
+ ypad = bbox->width() * kOrientedPadFactor;
+ if ((blob->neighbour(BND_LEFT) == nullptr ||
+ bbox->x_gap(blob->neighbour(BND_LEFT)->bounding_box()) > pad_limit) &&
+ (blob->neighbour(BND_RIGHT) == nullptr ||
+ bbox->x_gap(blob->neighbour(BND_RIGHT)->bounding_box()) > pad_limit)) {
+ xpad = scale_factor_;
+ }
+ } else {
+ if ((blob->neighbour(BND_ABOVE) != nullptr &&
+ blob->neighbour(BND_ABOVE)->neighbour(BND_BELOW) == blob) ||
+ (blob->neighbour(BND_BELOW) != nullptr &&
+ blob->neighbour(BND_BELOW)->neighbour(BND_ABOVE) == blob)) {
+ ypad = bbox->width() * kDefaultPadFactor;
+ }
+ if ((blob->neighbour(BND_RIGHT) != nullptr &&
+ blob->neighbour(BND_RIGHT)->neighbour(BND_LEFT) == blob) ||
+ (blob->neighbour(BND_LEFT) != nullptr &&
+ blob->neighbour(BND_LEFT)->neighbour(BND_RIGHT) == blob)) {
+ xpad = bbox->height() * kDefaultPadFactor;
+ padding_horizontally = true;
+ }
+ }
+ bbox->pad(xpad, ypad);
+ pad_limit = scale_factor_ * kMaxTabStopOverrun;
+ // Now shrink horizontally to avoid stepping more than pad_limit over a
+ // tab-stop.
+ if (bbox->left() < blob->left_rule() - pad_limit) {
+ bbox->set_left(blob->left_rule() - pad_limit);
+ }
+ if (bbox->right() > blob->right_rule() + pad_limit) {
+ bbox->set_right(blob->right_rule() + pad_limit);
+ }
+ return padding_horizontally;
+}
+
+// Helper denormalizes the TPOINT with the denorm if not nullptr, then
+// converts to pix_ coordinates.
+void TextlineProjection::TransformToPixCoords(const DENORM* denorm,
+ TPOINT* pt) const {
+ if (denorm != nullptr) {
+ // Denormalize the point.
+ denorm->DenormTransform(nullptr, *pt, pt);
+ }
+ pt->x = ImageXToProjectionX(pt->x);
+ pt->y = ImageYToProjectionY(pt->y);
+}
+
+#if defined(_MSC_VER) && !defined(__clang__)
+#pragma optimize("g", off)
+#endif // _MSC_VER
+// Helper truncates the TPOINT to be within the pix_.
+void TextlineProjection::TruncateToImageBounds(TPOINT* pt) const {
+ pt->x = ClipToRange<int>(pt->x, 0, pixGetWidth(pix_) - 1);
+ pt->y = ClipToRange<int>(pt->y, 0, pixGetHeight(pix_) - 1);
+}
+#if defined(_MSC_VER) && !defined(__clang__)
+#pragma optimize("", on)
+#endif // _MSC_VER
+
+// Transform tesseract image coordinates to coordinates used in the projection.
+int TextlineProjection::ImageXToProjectionX(int x) const {
+ x = ClipToRange((x - x_origin_) / scale_factor_, 0, pixGetWidth(pix_) - 1);
+ return x;
+}
+int TextlineProjection::ImageYToProjectionY(int y) const {
+ y = ClipToRange((y_origin_ - y) / scale_factor_, 0, pixGetHeight(pix_) - 1);
+ return y;
+}
+
+} // namespace tesseract.