summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
Diffstat (limited to 'tesseract/src/textord/colfind.cpp')
-rw-r--r--tesseract/src/textord/colfind.cpp1642
1 files changed, 1642 insertions, 0 deletions
diff --git a/tesseract/src/textord/colfind.cpp b/tesseract/src/textord/colfind.cpp
new file mode 100644
index 00000000..e305a2c3
--- /dev/null
+++ b/tesseract/src/textord/colfind.cpp
@@ -0,0 +1,1642 @@
+///////////////////////////////////////////////////////////////////////
+// File: colfind.cpp
+// Description: Class to hold BLOBNBOXs in a grid for fast access
+// to neighbours.
+// Author: Ray Smith
+//
+// (C) Copyright 2007, Google Inc.
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+// http://www.apache.org/licenses/LICENSE-2.0
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+//
+///////////////////////////////////////////////////////////////////////
+
+// Include automatically generated configuration file if running autoconf.
+#ifdef HAVE_CONFIG_H
+#include "config_auto.h"
+#endif
+
+#include "colfind.h"
+
+#include "ccnontextdetect.h"
+#include "colpartition.h"
+#include "colpartitionset.h"
+#ifndef DISABLED_LEGACY_ENGINE
+#include "equationdetectbase.h"
+#endif
+#include "linefind.h"
+#include "normalis.h"
+#include "strokewidth.h"
+#include "blobbox.h"
+#include "scrollview.h"
+#include "tablefind.h"
+#include "params.h"
+#include "workingpartset.h"
+
+#include <algorithm>
+
+namespace tesseract {
+
+// When assigning columns, the max number of misfit grid rows/ColPartitionSets
+// that can be ignored.
+const int kMaxIncompatibleColumnCount = 2;
+// Max fraction of mean_column_gap_ for the gap between two partitions within a
+// column to allow them to merge.
+const double kHorizontalGapMergeFraction = 0.5;
+// Minimum gutter width as a fraction of gridsize
+const double kMinGutterWidthGrid = 0.5;
+// Max multiple of a partition's median size as a distance threshold for
+// adding noise blobs.
+const double kMaxDistToPartSizeRatio = 1.5;
+
+#ifndef GRAPHICS_DISABLED
+static BOOL_VAR(textord_tabfind_show_initial_partitions,
+ false, "Show partition bounds");
+static BOOL_VAR(textord_tabfind_show_reject_blobs,
+ false, "Show blobs rejected as noise");
+static INT_VAR(textord_tabfind_show_partitions, 0,
+ "Show partition bounds, waiting if >1 (ScrollView)");
+static BOOL_VAR(textord_tabfind_show_columns, false, "Show column bounds (ScrollView)");
+static BOOL_VAR(textord_tabfind_show_blocks, false, "Show final block bounds (ScrollView)");
+#endif
+static BOOL_VAR(textord_tabfind_find_tables, true, "run table detection");
+
+#ifndef GRAPHICS_DISABLED
+ScrollView* ColumnFinder::blocks_win_ = nullptr;
+#endif
+
+// Gridsize is an estimate of the text size in the image. A suitable value
+// is in TO_BLOCK::line_size after find_components has been used to make
+// the blobs.
+// bleft and tright are the bounds of the image (or rectangle) being processed.
+// vlines is a (possibly empty) list of TabVector and vertical_x and y are
+// the sum logical vertical vector produced by LineFinder::FindVerticalLines.
+ColumnFinder::ColumnFinder(int gridsize,
+ const ICOORD& bleft, const ICOORD& tright,
+ int resolution, bool cjk_script,
+ double aligned_gap_fraction,
+ TabVector_LIST* vlines, TabVector_LIST* hlines,
+ int vertical_x, int vertical_y)
+ : TabFind(gridsize, bleft, tright, vlines, vertical_x, vertical_y,
+ resolution),
+ cjk_script_(cjk_script),
+ min_gutter_width_(static_cast<int>(kMinGutterWidthGrid * gridsize)),
+ mean_column_gap_(tright.x() - bleft.x()),
+ tabfind_aligned_gap_fraction_(aligned_gap_fraction),
+ deskew_(0.0f, 0.0f),
+ reskew_(1.0f, 0.0f), rotation_(1.0f, 0.0f), rerotate_(1.0f, 0.0f),
+ text_rotation_(0.0f, 0.0f),
+ best_columns_(nullptr), stroke_width_(nullptr),
+ part_grid_(gridsize, bleft, tright), nontext_map_(nullptr),
+ projection_(resolution),
+ denorm_(nullptr), input_blobs_win_(nullptr), equation_detect_(nullptr) {
+ TabVector_IT h_it(&horizontal_lines_);
+ h_it.add_list_after(hlines);
+}
+
+ColumnFinder::~ColumnFinder() {
+ column_sets_.delete_data_pointers();
+ delete [] best_columns_;
+ delete stroke_width_;
+ delete input_blobs_win_;
+ pixDestroy(&nontext_map_);
+ while (denorm_ != nullptr) {
+ DENORM* dead_denorm = denorm_;
+ denorm_ = const_cast<DENORM*>(denorm_->predecessor());
+ delete dead_denorm;
+ }
+
+ // The ColPartitions are destroyed automatically, but any boxes in
+ // the noise_parts_ list are owned and need to be deleted explicitly.
+ ColPartition_IT part_it(&noise_parts_);
+ for (part_it.mark_cycle_pt(); !part_it.cycled_list(); part_it.forward()) {
+ ColPartition* part = part_it.data();
+ part->DeleteBoxes();
+ }
+ // Likewise any boxes in the good_parts_ list need to be deleted.
+ // These are just the image parts. Text parts have already given their
+ // boxes on to the TO_BLOCK, and have empty lists.
+ part_it.set_to_list(&good_parts_);
+ for (part_it.mark_cycle_pt(); !part_it.cycled_list(); part_it.forward()) {
+ ColPartition* part = part_it.data();
+ part->DeleteBoxes();
+ }
+ // Also, any blobs on the image_bblobs_ list need to have their cblobs
+ // deleted. This only happens if there has been an early return from
+ // FindColumns, as in a normal return, the blobs go into the grid and
+ // end up in noise_parts_, good_parts_ or the output blocks.
+ BLOBNBOX_IT bb_it(&image_bblobs_);
+ for (bb_it.mark_cycle_pt(); !bb_it.cycled_list(); bb_it.forward()) {
+ BLOBNBOX* bblob = bb_it.data();
+ delete bblob->cblob();
+ }
+}
+
+// Performs initial processing on the blobs in the input_block:
+// Setup the part_grid, stroke_width_, nontext_map.
+// Obvious noise blobs are filtered out and used to mark the nontext_map_.
+// Initial stroke-width analysis is used to get local text alignment
+// direction, so the textline projection_ map can be setup.
+// On return, IsVerticallyAlignedText may be called (now optionally) to
+// determine the gross textline alignment of the page.
+void ColumnFinder::SetupAndFilterNoise(PageSegMode pageseg_mode,
+ Pix* photo_mask_pix,
+ TO_BLOCK* input_block) {
+ part_grid_.Init(gridsize(), bleft(), tright());
+ delete stroke_width_;
+ stroke_width_ = new StrokeWidth(gridsize(), bleft(), tright());
+ min_gutter_width_ = static_cast<int>(kMinGutterWidthGrid * gridsize());
+ input_block->ReSetAndReFilterBlobs();
+ #ifndef GRAPHICS_DISABLED
+ if (textord_tabfind_show_blocks) {
+ input_blobs_win_ = MakeWindow(0, 0, "Filtered Input Blobs");
+ input_block->plot_graded_blobs(input_blobs_win_);
+ }
+ #endif // !GRAPHICS_DISABLED
+ SetBlockRuleEdges(input_block);
+ pixDestroy(&nontext_map_);
+ // Run a preliminary strokewidth neighbour detection on the medium blobs.
+ stroke_width_->SetNeighboursOnMediumBlobs(input_block);
+ CCNonTextDetect nontext_detect(gridsize(), bleft(), tright());
+ // Remove obvious noise and make the initial non-text map.
+ nontext_map_ = nontext_detect.ComputeNonTextMask(textord_debug_tabfind,
+ photo_mask_pix, input_block);
+ stroke_width_->FindTextlineDirectionAndFixBrokenCJK(pageseg_mode, cjk_script_,
+ input_block);
+ // Clear the strokewidth grid ready for rotation or leader finding.
+ stroke_width_->Clear();
+}
+
+// Tests for vertical alignment of text (returning true if so), and generates
+// a list of blobs of moderate aspect ratio, in the most frequent writing
+// direction (in osd_blobs) for orientation and script detection to test
+// the character orientation.
+// block is the single block for the whole page or rectangle to be OCRed.
+// Note that the vertical alignment may be due to text whose writing direction
+// is vertical, like say Japanese, or due to text whose writing direction is
+// horizontal but whose text appears vertically aligned because the image is
+// not the right way up.
+bool ColumnFinder::IsVerticallyAlignedText(double find_vertical_text_ratio,
+ TO_BLOCK* block,
+ BLOBNBOX_CLIST* osd_blobs) {
+ return stroke_width_->TestVerticalTextDirection(find_vertical_text_ratio,
+ block, osd_blobs);
+}
+
+// Rotates the blobs and the TabVectors so that the gross writing direction
+// (text lines) are horizontal and lines are read down the page.
+// Applied rotation stored in rotation_.
+// A second rotation is calculated for application during recognition to
+// make the rotated blobs upright for recognition.
+// Subsequent rotation stored in text_rotation_.
+//
+// Arguments:
+// vertical_text_lines true if the text lines are vertical.
+// recognition_rotation [0..3] is the number of anti-clockwise 90 degree
+// rotations from osd required for the text to be upright and readable.
+void ColumnFinder::CorrectOrientation(TO_BLOCK* block,
+ bool vertical_text_lines,
+ int recognition_rotation) {
+ const FCOORD anticlockwise90(0.0f, 1.0f);
+ const FCOORD clockwise90(0.0f, -1.0f);
+ const FCOORD rotation180(-1.0f, 0.0f);
+ const FCOORD norotation(1.0f, 0.0f);
+
+ text_rotation_ = norotation;
+ // Rotate the page to make the text upright, as implied by
+ // recognition_rotation.
+ rotation_ = norotation;
+ if (recognition_rotation == 1) {
+ rotation_ = anticlockwise90;
+ } else if (recognition_rotation == 2) {
+ rotation_ = rotation180;
+ } else if (recognition_rotation == 3) {
+ rotation_ = clockwise90;
+ }
+ // We infer text writing direction to be vertical if there are several
+ // vertical text lines detected, and horizontal if not. But if the page
+ // orientation was determined to be 90 or 270 degrees, the true writing
+ // direction is the opposite of what we inferred.
+ if (recognition_rotation & 1) {
+ vertical_text_lines = !vertical_text_lines;
+ }
+ // If we still believe the writing direction is vertical, we use the
+ // convention of rotating the page ccw 90 degrees to make the text lines
+ // horizontal, and mark the blobs for rotation cw 90 degrees for
+ // classification so that the text order is correct after recognition.
+ if (vertical_text_lines) {
+ rotation_.rotate(anticlockwise90);
+ text_rotation_.rotate(clockwise90);
+ }
+ // Set rerotate_ to the inverse of rotation_.
+ rerotate_ = FCOORD(rotation_.x(), -rotation_.y());
+ if (rotation_.x() != 1.0f || rotation_.y() != 0.0f) {
+ // Rotate all the blobs and tab vectors.
+ RotateBlobList(rotation_, &block->large_blobs);
+ RotateBlobList(rotation_, &block->blobs);
+ RotateBlobList(rotation_, &block->small_blobs);
+ RotateBlobList(rotation_, &block->noise_blobs);
+ TabFind::ResetForVerticalText(rotation_, rerotate_, &horizontal_lines_,
+ &min_gutter_width_);
+ part_grid_.Init(gridsize(), bleft(), tright());
+ // Reset all blobs to initial state and filter by size.
+ // Since they have rotated, the list they belong on could have changed.
+ block->ReSetAndReFilterBlobs();
+ SetBlockRuleEdges(block);
+ stroke_width_->CorrectForRotation(rerotate_, &part_grid_);
+ }
+ if (textord_debug_tabfind) {
+ tprintf("Vertical=%d, orientation=%d, final rotation=(%f, %f)+(%f,%f)\n",
+ vertical_text_lines, recognition_rotation,
+ rotation_.x(), rotation_.y(),
+ text_rotation_.x(), text_rotation_.y());
+ }
+ // Setup the denormalization.
+ ASSERT_HOST(denorm_ == nullptr);
+ denorm_ = new DENORM;
+ denorm_->SetupNormalization(nullptr, &rotation_, nullptr,
+ 0.0f, 0.0f, 1.0f, 1.0f, 0.0f, 0.0f);
+}
+
+// Finds blocks of text, image, rule line, table etc, returning them in the
+// blocks and to_blocks
+// (Each TO_BLOCK points to the basic BLOCK and adds more information.)
+// Image blocks are generated by a combination of photo_mask_pix (which may
+// NOT be nullptr) and the rejected text found during preliminary textline
+// finding.
+// The input_block is the result of a call to find_components, and contains
+// the blobs found in the image or rectangle to be OCRed. These blobs will be
+// removed and placed in the output blocks, while unused ones will be deleted.
+// If single_column is true, the input is treated as single column, but
+// it is still divided into blocks of equal line spacing/text size.
+// scaled_color is scaled down by scaled_factor from the input color image,
+// and may be nullptr if the input was not color.
+// grey_pix is optional, but if present must match the photo_mask_pix in size,
+// and must be a *real* grey image instead of binary_pix * 255.
+// thresholds_pix is expected to be present iff grey_pix is present and
+// can be an integer factor reduction of the grey_pix. It represents the
+// thresholds that were used to create the binary_pix from the grey_pix.
+// If diacritic_blobs is non-null, then diacritics/noise blobs, that would
+// confuse layout analysis by causing textline overlap, are placed there,
+// with the expectation that they will be reassigned to words later and
+// noise/diacriticness determined via classification.
+// Returns -1 if the user hits the 'd' key in the blocks window while running
+// in debug mode, which requests a retry with more debug info.
+int ColumnFinder::FindBlocks(PageSegMode pageseg_mode, Pix* scaled_color,
+ int scaled_factor, TO_BLOCK* input_block,
+ Pix* photo_mask_pix, Pix* thresholds_pix,
+ Pix* grey_pix, DebugPixa* pixa_debug,
+ BLOCK_LIST* blocks, BLOBNBOX_LIST* diacritic_blobs,
+ TO_BLOCK_LIST* to_blocks) {
+ pixOr(photo_mask_pix, photo_mask_pix, nontext_map_);
+ stroke_width_->FindLeaderPartitions(input_block, &part_grid_);
+ stroke_width_->RemoveLineResidue(&big_parts_);
+ FindInitialTabVectors(nullptr, min_gutter_width_, tabfind_aligned_gap_fraction_,
+ input_block);
+ SetBlockRuleEdges(input_block);
+ stroke_width_->GradeBlobsIntoPartitions(
+ pageseg_mode, rerotate_, input_block, nontext_map_, denorm_, cjk_script_,
+ &projection_, diacritic_blobs, &part_grid_, &big_parts_);
+ if (!PSM_SPARSE(pageseg_mode)) {
+ ImageFind::FindImagePartitions(photo_mask_pix, rotation_, rerotate_,
+ input_block, this, pixa_debug, &part_grid_,
+ &big_parts_);
+ ImageFind::TransferImagePartsToImageMask(rerotate_, &part_grid_,
+ photo_mask_pix);
+ ImageFind::FindImagePartitions(photo_mask_pix, rotation_, rerotate_,
+ input_block, this, pixa_debug, &part_grid_,
+ &big_parts_);
+ }
+ part_grid_.ReTypeBlobs(&image_bblobs_);
+ TidyBlobs(input_block);
+ Reset();
+ // TODO(rays) need to properly handle big_parts_.
+ ColPartition_IT p_it(&big_parts_);
+ for (p_it.mark_cycle_pt(); !p_it.cycled_list(); p_it.forward())
+ p_it.data()->DisownBoxesNoAssert();
+ big_parts_.clear();
+ delete stroke_width_;
+ stroke_width_ = nullptr;
+ // Compute the edge offsets whether or not there is a grey_pix. It is done
+ // here as the c_blobs haven't been touched by rotation or anything yet,
+ // so no denorm is required, yet the text has been separated from image, so
+ // no time is wasted running it on image blobs.
+ input_block->ComputeEdgeOffsets(thresholds_pix, grey_pix);
+
+ // A note about handling right-to-left scripts (Hebrew/Arabic):
+ // The columns must be reversed and come out in right-to-left instead of
+ // the normal left-to-right order. Because the left-to-right ordering
+ // is implicit in many data structures, it is simpler to fool the algorithms
+ // into thinking they are dealing with left-to-right text.
+ // To do this, we reflect the needed data in the y-axis and then reflect
+ // the blocks back after they have been created. This is a temporary
+ // arrangement that is confined to this function only, so the reflection
+ // is completely invisible in the output blocks.
+ // The only objects reflected are:
+ // The vertical separator lines that have already been found;
+ // The bounding boxes of all BLOBNBOXES on all lists on the input_block
+ // plus the image_bblobs. The outlines are not touched, since they are
+ // not looked at.
+ bool input_is_rtl = input_block->block->right_to_left();
+ if (input_is_rtl) {
+ // Reflect the vertical separator lines (member of TabFind).
+ ReflectInYAxis();
+ // Reflect the blob boxes.
+ ReflectForRtl(input_block, &image_bblobs_);
+ part_grid_.ReflectInYAxis();
+ }
+
+ if (!PSM_SPARSE(pageseg_mode)) {
+ if (!PSM_COL_FIND_ENABLED(pageseg_mode)) {
+ // No tab stops needed. Just the grid that FindTabVectors makes.
+ DontFindTabVectors(&image_bblobs_, input_block, &deskew_, &reskew_);
+ } else {
+ SetBlockRuleEdges(input_block);
+ // Find the tab stops, estimate skew, and deskew the tabs, blobs and
+ // part_grid_.
+ FindTabVectors(&horizontal_lines_, &image_bblobs_, input_block,
+ min_gutter_width_, tabfind_aligned_gap_fraction_,
+ &part_grid_, &deskew_, &reskew_);
+ // Add the deskew to the denorm_.
+ auto* new_denorm = new DENORM;
+ new_denorm->SetupNormalization(nullptr, &deskew_, denorm_,
+ 0.0f, 0.0f, 1.0f, 1.0f, 0.0f, 0.0f);
+ denorm_ = new_denorm;
+ }
+ SetBlockRuleEdges(input_block);
+ part_grid_.SetTabStops(this);
+
+ // Make the column_sets_.
+ if (!MakeColumns(false)) {
+ tprintf("Empty page!!\n");
+ part_grid_.DeleteParts();
+ return 0; // This is an empty page.
+ }
+
+ // Refill the grid using rectangular spreading, and get the benefit
+ // of the completed tab vectors marking the rule edges of each blob.
+ Clear();
+ #ifndef GRAPHICS_DISABLED
+ if (textord_tabfind_show_reject_blobs) {
+ ScrollView* rej_win = MakeWindow(500, 300, "Rejected blobs");
+ input_block->plot_graded_blobs(rej_win);
+ }
+ #endif // !GRAPHICS_DISABLED
+ InsertBlobsToGrid(false, false, &image_bblobs_, this);
+ InsertBlobsToGrid(true, true, &input_block->blobs, this);
+
+ part_grid_.GridFindMargins(best_columns_);
+ // Split and merge the partitions by looking at local neighbours.
+ GridSplitPartitions();
+ // Resolve unknown partitions by adding to an existing partition, fixing
+ // the type, or declaring them noise.
+ part_grid_.GridFindMargins(best_columns_);
+ GridMergePartitions();
+ // Insert any unused noise blobs that are close enough to an appropriate
+ // partition.
+ InsertRemainingNoise(input_block);
+ // Add horizontal line separators as partitions.
+ GridInsertHLinePartitions();
+ GridInsertVLinePartitions();
+ // Recompute margins based on a local neighbourhood search.
+ part_grid_.GridFindMargins(best_columns_);
+ SetPartitionTypes();
+ }
+#ifndef GRAPHICS_DISABLED
+ if (textord_tabfind_show_initial_partitions) {
+ ScrollView* part_win = MakeWindow(100, 300, "InitialPartitions");
+ part_grid_.DisplayBoxes(part_win);
+ DisplayTabVectors(part_win);
+ }
+#endif
+ if (!PSM_SPARSE(pageseg_mode)) {
+ #ifndef DISABLED_LEGACY_ENGINE
+ if (equation_detect_) {
+ equation_detect_->FindEquationParts(&part_grid_, best_columns_);
+ }
+ #endif
+ if (textord_tabfind_find_tables) {
+ TableFinder table_finder;
+ table_finder.Init(gridsize(), bleft(), tright());
+ table_finder.set_resolution(resolution_);
+ table_finder.set_left_to_right_language(
+ !input_block->block->right_to_left());
+ // Copy cleaned partitions from part_grid_ to clean_part_grid_ and
+ // insert dot-like noise into period_grid_
+ table_finder.InsertCleanPartitions(&part_grid_, input_block);
+ // Get Table Regions
+ table_finder.LocateTables(&part_grid_, best_columns_, WidthCB(), reskew_);
+ }
+ GridRemoveUnderlinePartitions();
+ part_grid_.DeleteUnknownParts(input_block);
+
+ // Build the partitions into chains that belong in the same block and
+ // refine into one-to-one links, then smooth the types within each chain.
+ part_grid_.FindPartitionPartners();
+ part_grid_.FindFigureCaptions();
+ part_grid_.RefinePartitionPartners(true);
+ SmoothPartnerRuns();
+
+ #ifndef GRAPHICS_DISABLED
+ if (textord_tabfind_show_partitions) {
+ ScrollView* window = MakeWindow(400, 300, "Partitions");
+ if (window != nullptr) {
+ part_grid_.DisplayBoxes(window);
+ if (!textord_debug_printable)
+ DisplayTabVectors(window);
+ if (window != nullptr && textord_tabfind_show_partitions > 1) {
+ delete window->AwaitEvent(SVET_DESTROY);
+ }
+ }
+ }
+ #endif // !GRAPHICS_DISABLED
+ part_grid_.AssertNoDuplicates();
+ }
+ // Ownership of the ColPartitions moves from part_sets_ to part_grid_ here,
+ // and ownership of the BLOBNBOXes moves to the ColPartitions.
+ // (They were previously owned by the block or the image_bblobs list.)
+ ReleaseBlobsAndCleanupUnused(input_block);
+ // Ownership of the ColPartitions moves from part_grid_ to good_parts_ and
+ // noise_parts_ here. In text blocks, ownership of the BLOBNBOXes moves
+ // from the ColPartitions to the output TO_BLOCK. In non-text, the
+ // BLOBNBOXes stay with the ColPartitions and get deleted in the destructor.
+ if (PSM_SPARSE(pageseg_mode))
+ part_grid_.ExtractPartitionsAsBlocks(blocks, to_blocks);
+ else
+ TransformToBlocks(blocks, to_blocks);
+ if (textord_debug_tabfind) {
+ tprintf("Found %d blocks, %d to_blocks\n",
+ blocks->length(), to_blocks->length());
+ }
+
+#ifndef GRAPHICS_DISABLED
+ DisplayBlocks(blocks);
+#endif
+ RotateAndReskewBlocks(input_is_rtl, to_blocks);
+ int result = 0;
+ #ifndef GRAPHICS_DISABLED
+ if (blocks_win_ != nullptr) {
+ bool waiting = false;
+ do {
+ waiting = false;
+ SVEvent* event = blocks_win_->AwaitEvent(SVET_ANY);
+ if (event->type == SVET_INPUT && event->parameter != nullptr) {
+ if (*event->parameter == 'd')
+ result = -1;
+ else
+ blocks->clear();
+ } else if (event->type == SVET_DESTROY) {
+ blocks_win_ = nullptr;
+ } else {
+ waiting = true;
+ }
+ delete event;
+ } while (waiting);
+ }
+ #endif // !GRAPHICS_DISABLED
+ return result;
+}
+
+// Get the rotation required to deskew, and its inverse rotation.
+void ColumnFinder::GetDeskewVectors(FCOORD* deskew, FCOORD* reskew) {
+ *reskew = reskew_;
+ *deskew = reskew_;
+ deskew->set_y(-deskew->y());
+}
+
+#ifndef DISABLED_LEGACY_ENGINE
+void ColumnFinder::SetEquationDetect(EquationDetectBase* detect) {
+ equation_detect_ = detect;
+}
+#endif
+
+//////////////// PRIVATE CODE /////////////////////////
+
+#ifndef GRAPHICS_DISABLED
+
+// Displays the blob and block bounding boxes in a window called Blocks.
+void ColumnFinder::DisplayBlocks(BLOCK_LIST* blocks) {
+ if (textord_tabfind_show_blocks) {
+ if (blocks_win_ == nullptr)
+ blocks_win_ = MakeWindow(700, 300, "Blocks");
+ else
+ blocks_win_->Clear();
+ DisplayBoxes(blocks_win_);
+ BLOCK_IT block_it(blocks);
+ int serial = 1;
+ for (block_it.mark_cycle_pt(); !block_it.cycled_list();
+ block_it.forward()) {
+ BLOCK* block = block_it.data();
+ block->pdblk.plot(blocks_win_, serial++,
+ textord_debug_printable ? ScrollView::BLUE
+ : ScrollView::GREEN);
+ }
+ blocks_win_->Update();
+ }
+}
+
+// Displays the column edges at each grid y coordinate defined by
+// best_columns_.
+void ColumnFinder::DisplayColumnBounds(PartSetVector* sets) {
+ ScrollView* col_win = MakeWindow(50, 300, "Columns");
+ DisplayBoxes(col_win);
+ col_win->Pen(textord_debug_printable ? ScrollView::BLUE : ScrollView::GREEN);
+ for (int i = 0; i < gridheight_; ++i) {
+ ColPartitionSet* columns = best_columns_[i];
+ if (columns != nullptr)
+ columns->DisplayColumnEdges(i * gridsize_, (i + 1) * gridsize_, col_win);
+ }
+}
+
+#endif // !GRAPHICS_DISABLED
+
+// Sets up column_sets_ (the determined column layout at each horizontal
+// slice). Returns false if the page is empty.
+bool ColumnFinder::MakeColumns(bool single_column) {
+ // The part_sets_ are a temporary structure used during column creation,
+ // and is a vector of ColPartitionSets, representing ColPartitions found
+ // at horizontal slices through the page.
+ PartSetVector part_sets;
+ if (!single_column) {
+ if (!part_grid_.MakeColPartSets(&part_sets))
+ return false; // Empty page.
+ ASSERT_HOST(part_grid_.gridheight() == gridheight_);
+ // Try using only the good parts first.
+ bool good_only = true;
+ do {
+ for (int i = 0; i < gridheight_; ++i) {
+ ColPartitionSet* line_set = part_sets.get(i);
+ if (line_set != nullptr && line_set->LegalColumnCandidate()) {
+ ColPartitionSet* column_candidate = line_set->Copy(good_only);
+ if (column_candidate != nullptr)
+ column_candidate->AddToColumnSetsIfUnique(&column_sets_, WidthCB());
+ }
+ }
+ good_only = !good_only;
+ } while (column_sets_.empty() && !good_only);
+ if (textord_debug_tabfind)
+ PrintColumnCandidates("Column candidates");
+ // Improve the column candidates against themselves.
+ ImproveColumnCandidates(&column_sets_, &column_sets_);
+ if (textord_debug_tabfind)
+ PrintColumnCandidates("Improved columns");
+ // Improve the column candidates using the part_sets_.
+ ImproveColumnCandidates(&part_sets, &column_sets_);
+ }
+ ColPartitionSet* single_column_set =
+ part_grid_.MakeSingleColumnSet(WidthCB());
+ if (single_column_set != nullptr) {
+ // Always add the single column set as a backup even if not in
+ // single column mode.
+ single_column_set->AddToColumnSetsIfUnique(&column_sets_, WidthCB());
+ }
+ if (textord_debug_tabfind)
+ PrintColumnCandidates("Final Columns");
+ bool has_columns = !column_sets_.empty();
+ if (has_columns) {
+ // Divide the page into sections of uniform column layout.
+ bool any_multi_column = AssignColumns(part_sets);
+#ifndef GRAPHICS_DISABLED
+ if (textord_tabfind_show_columns) {
+ DisplayColumnBounds(&part_sets);
+ }
+#endif
+ ComputeMeanColumnGap(any_multi_column);
+ }
+ for (int i = 0; i < part_sets.size(); ++i) {
+ ColPartitionSet* line_set = part_sets.get(i);
+ if (line_set != nullptr) {
+ line_set->RelinquishParts();
+ delete line_set;
+ }
+ }
+ return has_columns;
+}
+
+// Attempt to improve the column_candidates by expanding the columns
+// and adding new partitions from the partition sets in src_sets.
+// Src_sets may be equal to column_candidates, in which case it will
+// use them as a source to improve themselves.
+void ColumnFinder::ImproveColumnCandidates(PartSetVector* src_sets,
+ PartSetVector* column_sets) {
+ PartSetVector temp_cols;
+ temp_cols.move(column_sets);
+ if (src_sets == column_sets)
+ src_sets = &temp_cols;
+ int set_size = temp_cols.size();
+ // Try using only the good parts first.
+ bool good_only = true;
+ do {
+ for (int i = 0; i < set_size; ++i) {
+ ColPartitionSet* column_candidate = temp_cols.get(i);
+ ASSERT_HOST(column_candidate != nullptr);
+ ColPartitionSet* improved = column_candidate->Copy(good_only);
+ if (improved != nullptr) {
+ improved->ImproveColumnCandidate(WidthCB(), src_sets);
+ improved->AddToColumnSetsIfUnique(column_sets, WidthCB());
+ }
+ }
+ good_only = !good_only;
+ } while (column_sets->empty() && !good_only);
+ if (column_sets->empty())
+ column_sets->move(&temp_cols);
+ else
+ temp_cols.delete_data_pointers();
+}
+
+// Prints debug information on the column candidates.
+void ColumnFinder::PrintColumnCandidates(const char* title) {
+ int set_size = column_sets_.size();
+ tprintf("Found %d %s:\n", set_size, title);
+ if (textord_debug_tabfind >= 3) {
+ for (int i = 0; i < set_size; ++i) {
+ ColPartitionSet* column_set = column_sets_.get(i);
+ column_set->Print();
+ }
+ }
+}
+
+// Finds the optimal set of columns that cover the entire image with as
+// few changes in column partition as possible.
+// NOTE: this could be thought of as an optimization problem, but a simple
+// greedy algorithm is used instead. The algorithm repeatedly finds the modal
+// compatible column in an unassigned region and uses that with the extra
+// tweak of extending the modal region over small breaks in compatibility.
+// Where modal regions overlap, the boundary is chosen so as to minimize
+// the cost in terms of ColPartitions not fitting an approved column.
+// Returns true if any part of the page is multi-column.
+bool ColumnFinder::AssignColumns(const PartSetVector& part_sets) {
+ int set_count = part_sets.size();
+ ASSERT_HOST(set_count == gridheight());
+ // Allocate and init the best_columns_.
+ best_columns_ = new ColPartitionSet*[set_count];
+ for (int y = 0; y < set_count; ++y)
+ best_columns_[y] = nullptr;
+ int column_count = column_sets_.size();
+ // column_set_costs[part_sets_ index][column_sets_ index] is
+ // < INT32_MAX if the partition set is compatible with the column set,
+ // in which case its value is the cost for that set used in deciding
+ // which competing set to assign.
+ // any_columns_possible[part_sets_ index] is true if any of
+ // possible_column_sets[part_sets_ index][*] is < INT32_MAX.
+ // assigned_costs[part_sets_ index] is set to the column_set_costs
+ // of the assigned column_sets_ index or INT32_MAX if none is set.
+ // On return the best_columns_ member is set.
+ bool* any_columns_possible = new bool[set_count];
+ int* assigned_costs = new int[set_count];
+ int** column_set_costs = new int*[set_count];
+ // Set possible column_sets to indicate whether each set is compatible
+ // with each column.
+ for (int part_i = 0; part_i < set_count; ++part_i) {
+ ColPartitionSet* line_set = part_sets.get(part_i);
+ bool debug = line_set != nullptr &&
+ WithinTestRegion(2, line_set->bounding_box().left(),
+ line_set->bounding_box().bottom());
+ column_set_costs[part_i] = new int[column_count];
+ any_columns_possible[part_i] = false;
+ assigned_costs[part_i] = INT32_MAX;
+ for (int col_i = 0; col_i < column_count; ++col_i) {
+ if (line_set != nullptr &&
+ column_sets_.get(col_i)->CompatibleColumns(debug, line_set,
+ WidthCB())) {
+ column_set_costs[part_i][col_i] =
+ column_sets_.get(col_i)->UnmatchedWidth(line_set);
+ any_columns_possible[part_i] = true;
+ } else {
+ column_set_costs[part_i][col_i] = INT32_MAX;
+ if (debug)
+ tprintf("Set id %d did not match at y=%d, lineset =%p\n",
+ col_i, part_i, line_set);
+ }
+ }
+ }
+ bool any_multi_column = false;
+ // Assign a column set to each vertical grid position.
+ // While there is an unassigned range, find its mode.
+ int start, end;
+ while (BiggestUnassignedRange(set_count, any_columns_possible,
+ &start, &end)) {
+ if (textord_debug_tabfind >= 2)
+ tprintf("Biggest unassigned range = %d- %d\n", start, end);
+ // Find the modal column_set_id in the range.
+ int column_set_id = RangeModalColumnSet(column_set_costs,
+ assigned_costs, start, end);
+ if (textord_debug_tabfind >= 2) {
+ tprintf("Range modal column id = %d\n", column_set_id);
+ column_sets_.get(column_set_id)->Print();
+ }
+ // Now find the longest run of the column_set_id in the range.
+ ShrinkRangeToLongestRun(column_set_costs, assigned_costs,
+ any_columns_possible,
+ column_set_id, &start, &end);
+ if (textord_debug_tabfind >= 2)
+ tprintf("Shrunk range = %d- %d\n", start, end);
+ // Extend the start and end past the longest run, while there are
+ // only small gaps in compatibility that can be overcome by larger
+ // regions of compatibility beyond.
+ ExtendRangePastSmallGaps(column_set_costs, assigned_costs,
+ any_columns_possible,
+ column_set_id, -1, -1, &start);
+ --end;
+ ExtendRangePastSmallGaps(column_set_costs, assigned_costs,
+ any_columns_possible,
+ column_set_id, 1, set_count, &end);
+ ++end;
+ if (textord_debug_tabfind)
+ tprintf("Column id %d applies to range = %d - %d\n",
+ column_set_id, start, end);
+ // Assign the column to the range, which now may overlap with other ranges.
+ AssignColumnToRange(column_set_id, start, end, column_set_costs,
+ assigned_costs);
+ if (column_sets_.get(column_set_id)->GoodColumnCount() > 1)
+ any_multi_column = true;
+ }
+ // If anything remains unassigned, the whole lot is unassigned, so
+ // arbitrarily assign id 0.
+ if (best_columns_[0] == nullptr) {
+ AssignColumnToRange(0, 0, gridheight_, column_set_costs, assigned_costs);
+ }
+ // Free memory.
+ for (int i = 0; i < set_count; ++i) {
+ delete [] column_set_costs[i];
+ }
+ delete [] assigned_costs;
+ delete [] any_columns_possible;
+ delete [] column_set_costs;
+ return any_multi_column;
+}
+
+// Finds the biggest range in part_sets_ that has no assigned column, but
+// column assignment is possible.
+bool ColumnFinder::BiggestUnassignedRange(int set_count,
+ const bool* any_columns_possible,
+ int* best_start, int* best_end) {
+ int best_range_size = 0;
+ *best_start = set_count;
+ *best_end = set_count;
+ int end = set_count;
+ for (int start = 0; start < gridheight_; start = end) {
+ // Find the first unassigned index in start.
+ while (start < set_count) {
+ if (best_columns_[start] == nullptr && any_columns_possible[start])
+ break;
+ ++start;
+ }
+ // Find the first past the end and count the good ones in between.
+ int range_size = 1; // Number of non-null, but unassigned line sets.
+ end = start + 1;
+ while (end < set_count) {
+ if (best_columns_[end] != nullptr)
+ break;
+ if (any_columns_possible[end])
+ ++range_size;
+ ++end;
+ }
+ if (start < set_count && range_size > best_range_size) {
+ best_range_size = range_size;
+ *best_start = start;
+ *best_end = end;
+ }
+ }
+ return *best_start < *best_end;
+}
+
+// Finds the modal compatible column_set_ index within the given range.
+int ColumnFinder::RangeModalColumnSet(int** column_set_costs,
+ const int* assigned_costs,
+ int start, int end) {
+ int column_count = column_sets_.size();
+ STATS column_stats(0, column_count);
+ for (int part_i = start; part_i < end; ++part_i) {
+ for (int col_j = 0; col_j < column_count; ++col_j) {
+ if (column_set_costs[part_i][col_j] < assigned_costs[part_i])
+ column_stats.add(col_j, 1);
+ }
+ }
+ ASSERT_HOST(column_stats.get_total() > 0);
+ return column_stats.mode();
+}
+
+// Given that there are many column_set_id compatible columns in the range,
+// shrinks the range to the longest contiguous run of compatibility, allowing
+// gaps where no columns are possible, but not where competing columns are
+// possible.
+void ColumnFinder::ShrinkRangeToLongestRun(int** column_set_costs,
+ const int* assigned_costs,
+ const bool* any_columns_possible,
+ int column_set_id,
+ int* best_start, int* best_end) {
+ // orig_start and orig_end are the maximum range we will look at.
+ int orig_start = *best_start;
+ int orig_end = *best_end;
+ int best_range_size = 0;
+ *best_start = orig_end;
+ *best_end = orig_end;
+ int end = orig_end;
+ for (int start = orig_start; start < orig_end; start = end) {
+ // Find the first possible
+ while (start < orig_end) {
+ if (column_set_costs[start][column_set_id] < assigned_costs[start] ||
+ !any_columns_possible[start])
+ break;
+ ++start;
+ }
+ // Find the first past the end.
+ end = start + 1;
+ while (end < orig_end) {
+ if (column_set_costs[end][column_set_id] >= assigned_costs[start] &&
+ any_columns_possible[end])
+ break;
+ ++end;
+ }
+ if (start < orig_end && end - start > best_range_size) {
+ best_range_size = end - start;
+ *best_start = start;
+ *best_end = end;
+ }
+ }
+}
+
+// Moves start in the direction of step, up to, but not including end while
+// the only incompatible regions are no more than kMaxIncompatibleColumnCount
+// in size, and the compatible regions beyond are bigger.
+void ColumnFinder::ExtendRangePastSmallGaps(int** column_set_costs,
+ const int* assigned_costs,
+ const bool* any_columns_possible,
+ int column_set_id,
+ int step, int end, int* start) {
+ if (textord_debug_tabfind > 2)
+ tprintf("Starting expansion at %d, step=%d, limit=%d\n",
+ *start, step, end);
+ if (*start == end)
+ return; // Cannot be expanded.
+
+ int barrier_size = 0;
+ int good_size = 0;
+ do {
+ // Find the size of the incompatible barrier.
+ barrier_size = 0;
+ int i;
+ for (i = *start + step; i != end; i += step) {
+ if (column_set_costs[i][column_set_id] < assigned_costs[i])
+ break; // We are back on.
+ // Locations where none are possible don't count.
+ if (any_columns_possible[i])
+ ++barrier_size;
+ }
+ if (textord_debug_tabfind > 2)
+ tprintf("At %d, Barrier size=%d\n", i, barrier_size);
+ if (barrier_size > kMaxIncompatibleColumnCount)
+ return; // Barrier too big.
+ if (i == end) {
+ // We can't go any further, but the barrier was small, so go to the end.
+ *start = i - step;
+ return;
+ }
+ // Now find the size of the good region on the other side.
+ good_size = 1;
+ for (i += step; i != end; i += step) {
+ if (column_set_costs[i][column_set_id] < assigned_costs[i])
+ ++good_size;
+ else if (any_columns_possible[i])
+ break;
+ }
+ if (textord_debug_tabfind > 2)
+ tprintf("At %d, good size = %d\n", i, good_size);
+ // If we had enough good ones we can extend the start and keep looking.
+ if (good_size >= barrier_size)
+ *start = i - step;
+ } while (good_size >= barrier_size);
+}
+
+// Assigns the given column_set_id to the given range.
+void ColumnFinder::AssignColumnToRange(int column_set_id, int start, int end,
+ int** column_set_costs,
+ int* assigned_costs) {
+ ColPartitionSet* column_set = column_sets_.get(column_set_id);
+ for (int i = start; i < end; ++i) {
+ assigned_costs[i] = column_set_costs[i][column_set_id];
+ best_columns_[i] = column_set;
+ }
+}
+
+// Computes the mean_column_gap_.
+void ColumnFinder::ComputeMeanColumnGap(bool any_multi_column) {
+ int total_gap = 0;
+ int total_width = 0;
+ int gap_samples = 0;
+ int width_samples = 0;
+ for (int i = 0; i < gridheight_; ++i) {
+ ASSERT_HOST(best_columns_[i] != nullptr);
+ best_columns_[i]->AccumulateColumnWidthsAndGaps(&total_width,
+ &width_samples,
+ &total_gap,
+ &gap_samples);
+ }
+ mean_column_gap_ = any_multi_column && gap_samples > 0
+ ? total_gap / gap_samples : width_samples > 0
+ ? total_width / width_samples : 0;
+}
+
+//////// Functions that manipulate ColPartitions in the part_grid_ /////
+//////// to split, merge, find margins, and find types. //////////////
+
+// Helper to delete all the deletable blobs on the list. Owned blobs are
+// extracted from the list, but not deleted, leaving them owned by the owner().
+static void ReleaseAllBlobsAndDeleteUnused(BLOBNBOX_LIST* blobs) {
+ for (BLOBNBOX_IT blob_it(blobs); !blob_it.empty(); blob_it.forward()) {
+ BLOBNBOX* blob = blob_it.extract();
+ if (blob->owner() == nullptr) {
+ delete blob->cblob();
+ delete blob;
+ }
+ }
+}
+
+// Hoovers up all un-owned blobs and deletes them.
+// The rest get released from the block so the ColPartitions can pass
+// ownership to the output blocks.
+void ColumnFinder::ReleaseBlobsAndCleanupUnused(TO_BLOCK* block) {
+ ReleaseAllBlobsAndDeleteUnused(&block->blobs);
+ ReleaseAllBlobsAndDeleteUnused(&block->small_blobs);
+ ReleaseAllBlobsAndDeleteUnused(&block->noise_blobs);
+ ReleaseAllBlobsAndDeleteUnused(&block->large_blobs);
+ ReleaseAllBlobsAndDeleteUnused(&image_bblobs_);
+}
+
+// Splits partitions that cross columns where they have nothing in the gap.
+void ColumnFinder::GridSplitPartitions() {
+ // Iterate the ColPartitions in the grid.
+ GridSearch<ColPartition, ColPartition_CLIST, ColPartition_C_IT>
+ gsearch(&part_grid_);
+ gsearch.StartFullSearch();
+ ColPartition* dont_repeat = nullptr;
+ ColPartition* part;
+ while ((part = gsearch.NextFullSearch()) != nullptr) {
+ if (part->blob_type() < BRT_UNKNOWN || part == dont_repeat)
+ continue; // Only applies to text partitions.
+ ColPartitionSet* column_set = best_columns_[gsearch.GridY()];
+ int first_col = -1;
+ int last_col = -1;
+ // Find which columns the partition spans.
+ part->ColumnRange(resolution_, column_set, &first_col, &last_col);
+ if (first_col > 0)
+ --first_col;
+ // Convert output column indices to physical column indices.
+ first_col /= 2;
+ last_col /= 2;
+ // We will only consider cases where a partition spans two columns,
+ // since a heading that spans more columns than that is most likely
+ // genuine.
+ if (last_col != first_col + 1)
+ continue;
+ // Set up a rectangle search x-bounded by the column gap and y by the part.
+ int y = part->MidY();
+ TBOX margin_box = part->bounding_box();
+ bool debug = AlignedBlob::WithinTestRegion(2, margin_box.left(),
+ margin_box.bottom());
+ if (debug) {
+ tprintf("Considering partition for GridSplit:");
+ part->Print();
+ }
+ ColPartition* column = column_set->GetColumnByIndex(first_col);
+ if (column == nullptr)
+ continue;
+ margin_box.set_left(column->RightAtY(y) + 2);
+ column = column_set->GetColumnByIndex(last_col);
+ if (column == nullptr)
+ continue;
+ margin_box.set_right(column->LeftAtY(y) - 2);
+ // TODO(rays) Decide whether to keep rectangular filling or not in the
+ // main grid and therefore whether we need a fancier search here.
+ // Now run the rect search on the main blob grid.
+ GridSearch<BLOBNBOX, BLOBNBOX_CLIST, BLOBNBOX_C_IT> rectsearch(this);
+ if (debug) {
+ tprintf("Searching box (%d,%d)->(%d,%d)\n",
+ margin_box.left(), margin_box.bottom(),
+ margin_box.right(), margin_box.top());
+ part->Print();
+ }
+ rectsearch.StartRectSearch(margin_box);
+ BLOBNBOX* bbox;
+ while ((bbox = rectsearch.NextRectSearch()) != nullptr) {
+ if (bbox->bounding_box().overlap(margin_box))
+ break;
+ }
+ if (bbox == nullptr) {
+ // There seems to be nothing in the hole, so split the partition.
+ gsearch.RemoveBBox();
+ int x_middle = (margin_box.left() + margin_box.right()) / 2;
+ if (debug) {
+ tprintf("Splitting part at %d:", x_middle);
+ part->Print();
+ }
+ ColPartition* split_part = part->SplitAt(x_middle);
+ if (split_part != nullptr) {
+ if (debug) {
+ tprintf("Split result:");
+ part->Print();
+ split_part->Print();
+ }
+ part_grid_.InsertBBox(true, true, split_part);
+ } else {
+ // Split had no effect
+ if (debug)
+ tprintf("Split had no effect\n");
+ dont_repeat = part;
+ }
+ part_grid_.InsertBBox(true, true, part);
+ gsearch.RepositionIterator();
+ } else if (debug) {
+ tprintf("Part cannot be split: blob (%d,%d)->(%d,%d) in column gap\n",
+ bbox->bounding_box().left(), bbox->bounding_box().bottom(),
+ bbox->bounding_box().right(), bbox->bounding_box().top());
+ }
+ }
+}
+
+// Merges partitions where there is vertical overlap, within a single column,
+// and the horizontal gap is small enough.
+void ColumnFinder::GridMergePartitions() {
+ // Iterate the ColPartitions in the grid.
+ GridSearch<ColPartition, ColPartition_CLIST, ColPartition_C_IT>
+ gsearch(&part_grid_);
+ gsearch.StartFullSearch();
+ ColPartition* part;
+ while ((part = gsearch.NextFullSearch()) != nullptr) {
+ if (part->IsUnMergeableType())
+ continue;
+ // Set up a rectangle search x-bounded by the column and y by the part.
+ ColPartitionSet* columns = best_columns_[gsearch.GridY()];
+ TBOX box = part->bounding_box();
+ bool debug = AlignedBlob::WithinTestRegion(1, box.left(), box.bottom());
+ if (debug) {
+ tprintf("Considering part for merge at:");
+ part->Print();
+ }
+ int y = part->MidY();
+ ColPartition* left_column = columns->ColumnContaining(box.left(), y);
+ ColPartition* right_column = columns->ColumnContaining(box.right(), y);
+ if (left_column == nullptr || right_column != left_column) {
+ if (debug)
+ tprintf("In different columns\n");
+ continue;
+ }
+ box.set_left(left_column->LeftAtY(y));
+ box.set_right(right_column->RightAtY(y));
+ // Now run the rect search.
+ bool modified_box = false;
+ GridSearch<ColPartition, ColPartition_CLIST, ColPartition_C_IT>
+ rsearch(&part_grid_);
+ rsearch.SetUniqueMode(true);
+ rsearch.StartRectSearch(box);
+ ColPartition* neighbour;
+
+ while ((neighbour = rsearch.NextRectSearch()) != nullptr) {
+ if (neighbour == part || neighbour->IsUnMergeableType())
+ continue;
+ const TBOX& neighbour_box = neighbour->bounding_box();
+ if (debug) {
+ tprintf("Considering merge with neighbour at:");
+ neighbour->Print();
+ }
+ if (neighbour_box.right() < box.left() ||
+ neighbour_box.left() > box.right())
+ continue; // Not within the same column.
+ if (part->VSignificantCoreOverlap(*neighbour) &&
+ part->TypesMatch(*neighbour)) {
+ // There is vertical overlap and the gross types match, but only
+ // merge if the horizontal gap is small enough, as one of the
+ // partitions may be a figure caption within a column.
+ // If there is only one column, then the mean_column_gap_ is large
+ // enough to allow almost any merge, by being the mean column width.
+ const TBOX& part_box = part->bounding_box();
+ // Don't merge if there is something else in the way. Use the margin
+ // to decide, and check both to allow a bit of overlap.
+ if (neighbour_box.left() > part->right_margin() &&
+ part_box.right() < neighbour->left_margin())
+ continue; // Neighbour is too far to the right.
+ if (neighbour_box.right() < part->left_margin() &&
+ part_box.left() > neighbour->right_margin())
+ continue; // Neighbour is too far to the left.
+ int h_gap = std::max(part_box.left(), neighbour_box.left()) -
+ std::min(part_box.right(), neighbour_box.right());
+ if (h_gap < mean_column_gap_ * kHorizontalGapMergeFraction ||
+ part_box.width() < mean_column_gap_ ||
+ neighbour_box.width() < mean_column_gap_) {
+ if (debug) {
+ tprintf("Running grid-based merge between:\n");
+ part->Print();
+ neighbour->Print();
+ }
+ rsearch.RemoveBBox();
+ if (!modified_box) {
+ // We are going to modify part, so remove it and re-insert it after.
+ gsearch.RemoveBBox();
+ rsearch.RepositionIterator();
+ modified_box = true;
+ }
+ part->Absorb(neighbour, WidthCB());
+ } else if (debug) {
+ tprintf("Neighbour failed hgap test\n");
+ }
+ } else if (debug) {
+ tprintf("Neighbour failed overlap or typesmatch test\n");
+ }
+ }
+ if (modified_box) {
+ // We modified the box of part, so re-insert it into the grid.
+ // This does no harm in the current cell, as it already exists there,
+ // but it needs to exist in all the cells covered by its bounding box,
+ // or it will never be found by a full search.
+ // Because the box has changed, it has to be removed first, otherwise
+ // add_sorted may fail to keep a single copy of the pointer.
+ part_grid_.InsertBBox(true, true, part);
+ gsearch.RepositionIterator();
+ }
+ }
+}
+
+// Inserts remaining noise blobs into the most applicable partition if any.
+// If there is no applicable partition, then the blobs are deleted.
+void ColumnFinder::InsertRemainingNoise(TO_BLOCK* block) {
+ BLOBNBOX_IT blob_it(&block->noise_blobs);
+ for (blob_it.mark_cycle_pt(); !blob_it.cycled_list(); blob_it.forward()) {
+ BLOBNBOX* blob = blob_it.data();
+ if (blob->owner() != nullptr) continue;
+ TBOX search_box(blob->bounding_box());
+ bool debug = WithinTestRegion(2, search_box.left(), search_box.bottom());
+ search_box.pad(gridsize(), gridsize());
+ // Setup a rectangle search to find the best partition to merge with.
+ ColPartitionGridSearch rsearch(&part_grid_);
+ rsearch.SetUniqueMode(true);
+ rsearch.StartRectSearch(search_box);
+ ColPartition* part;
+ ColPartition* best_part = nullptr;
+ int best_distance = 0;
+ while ((part = rsearch.NextRectSearch()) != nullptr) {
+ if (part->IsUnMergeableType())
+ continue;
+ int distance = projection_.DistanceOfBoxFromPartition(
+ blob->bounding_box(), *part, denorm_, debug);
+ if (best_part == nullptr || distance < best_distance) {
+ best_part = part;
+ best_distance = distance;
+ }
+ }
+ if (best_part != nullptr &&
+ best_distance < kMaxDistToPartSizeRatio * best_part->median_height()) {
+ // Close enough to merge.
+ if (debug) {
+ tprintf("Adding noise blob with distance %d, thr=%g:box:",
+ best_distance,
+ kMaxDistToPartSizeRatio * best_part->median_height());
+ blob->bounding_box().print();
+ tprintf("To partition:");
+ best_part->Print();
+ }
+ part_grid_.RemoveBBox(best_part);
+ best_part->AddBox(blob);
+ part_grid_.InsertBBox(true, true, best_part);
+ blob->set_owner(best_part);
+ blob->set_flow(best_part->flow());
+ blob->set_region_type(best_part->blob_type());
+ } else {
+ // Mark the blob for deletion.
+ blob->set_region_type(BRT_NOISE);
+ }
+ }
+ // Delete the marked blobs, clearing neighbour references.
+ block->DeleteUnownedNoise();
+}
+
+// Helper makes a box from a horizontal line.
+static TBOX BoxFromHLine(const TabVector* hline) {
+ int top = std::max(hline->startpt().y(), hline->endpt().y());
+ int bottom = std::min(hline->startpt().y(), hline->endpt().y());
+ top += hline->mean_width();
+ if (top == bottom) {
+ if (bottom > 0)
+ --bottom;
+ else
+ ++top;
+ }
+ return TBOX(hline->startpt().x(), bottom, hline->endpt().x(), top);
+}
+
+// Remove partitions that come from horizontal lines that look like
+// underlines, but are not part of a table.
+void ColumnFinder::GridRemoveUnderlinePartitions() {
+ TabVector_IT hline_it(&horizontal_lines_);
+ for (hline_it.mark_cycle_pt(); !hline_it.cycled_list(); hline_it.forward()) {
+ TabVector* hline = hline_it.data();
+ if (hline->intersects_other_lines())
+ continue;
+ TBOX line_box = BoxFromHLine(hline);
+ TBOX search_box = line_box;
+ search_box.pad(0, line_box.height());
+ ColPartitionGridSearch part_search(&part_grid_);
+ part_search.SetUniqueMode(true);
+ part_search.StartRectSearch(search_box);
+ ColPartition* covered;
+ bool touched_table = false;
+ bool touched_text = false;
+ ColPartition* line_part = nullptr;
+ while ((covered = part_search.NextRectSearch()) != nullptr) {
+ if (covered->type() == PT_TABLE) {
+ touched_table = true;
+ break;
+ } else if (covered->IsTextType()) {
+ // TODO(rays) Add a list of underline sections to ColPartition.
+ int text_bottom = covered->median_bottom();
+ if (line_box.bottom() <= text_bottom && text_bottom <= search_box.top())
+ touched_text = true;
+ } else if (covered->blob_type() == BRT_HLINE &&
+ line_box.contains(covered->bounding_box()) &&
+ // not if same instance (identical to hline)
+ !TBOX(covered->bounding_box()).contains(line_box)) {
+ line_part = covered;
+ }
+ }
+ if (line_part != nullptr && !touched_table && touched_text) {
+ part_grid_.RemoveBBox(line_part);
+ delete line_part;
+ }
+ }
+}
+
+// Add horizontal line separators as partitions.
+void ColumnFinder::GridInsertHLinePartitions() {
+ TabVector_IT hline_it(&horizontal_lines_);
+ for (hline_it.mark_cycle_pt(); !hline_it.cycled_list(); hline_it.forward()) {
+ TabVector* hline = hline_it.data();
+ TBOX line_box = BoxFromHLine(hline);
+ ColPartition* part = ColPartition::MakeLinePartition(
+ BRT_HLINE, vertical_skew_,
+ line_box.left(), line_box.bottom(), line_box.right(), line_box.top());
+ part->set_type(PT_HORZ_LINE);
+ bool any_image = false;
+ ColPartitionGridSearch part_search(&part_grid_);
+ part_search.SetUniqueMode(true);
+ part_search.StartRectSearch(line_box);
+ ColPartition* covered;
+ while ((covered = part_search.NextRectSearch()) != nullptr) {
+ if (covered->IsImageType()) {
+ any_image = true;
+ break;
+ }
+ }
+ if (!any_image)
+ part_grid_.InsertBBox(true, true, part);
+ else
+ delete part;
+ }
+}
+
+// Add horizontal line separators as partitions.
+void ColumnFinder::GridInsertVLinePartitions() {
+ TabVector_IT vline_it(dead_vectors());
+ for (vline_it.mark_cycle_pt(); !vline_it.cycled_list(); vline_it.forward()) {
+ TabVector* vline = vline_it.data();
+ if (!vline->IsSeparator())
+ continue;
+ int left = std::min(vline->startpt().x(), vline->endpt().x());
+ int right = std::max(vline->startpt().x(), vline->endpt().x());
+ right += vline->mean_width();
+ if (left == right) {
+ if (left > 0)
+ --left;
+ else
+ ++right;
+ }
+ ColPartition* part = ColPartition::MakeLinePartition(
+ BRT_VLINE, vertical_skew_,
+ left, vline->startpt().y(), right, vline->endpt().y());
+ part->set_type(PT_VERT_LINE);
+ bool any_image = false;
+ ColPartitionGridSearch part_search(&part_grid_);
+ part_search.SetUniqueMode(true);
+ part_search.StartRectSearch(part->bounding_box());
+ ColPartition* covered;
+ while ((covered = part_search.NextRectSearch()) != nullptr) {
+ if (covered->IsImageType()) {
+ any_image = true;
+ break;
+ }
+ }
+ if (!any_image)
+ part_grid_.InsertBBox(true, true, part);
+ else
+ delete part;
+ }
+}
+
+// For every ColPartition in the grid, sets its type based on position
+// in the columns.
+void ColumnFinder::SetPartitionTypes() {
+ GridSearch<ColPartition, ColPartition_CLIST, ColPartition_C_IT>
+ gsearch(&part_grid_);
+ gsearch.StartFullSearch();
+ ColPartition* part;
+ while ((part = gsearch.NextFullSearch()) != nullptr) {
+ part->SetPartitionType(resolution_, best_columns_[gsearch.GridY()]);
+ }
+}
+
+// Only images remain with multiple types in a run of partners.
+// Sets the type of all in the group to the maximum of the group.
+void ColumnFinder::SmoothPartnerRuns() {
+ // Iterate the ColPartitions in the grid.
+ GridSearch<ColPartition, ColPartition_CLIST, ColPartition_C_IT>
+ gsearch(&part_grid_);
+ gsearch.StartFullSearch();
+ ColPartition* part;
+ while ((part = gsearch.NextFullSearch()) != nullptr) {
+ ColPartition* partner = part->SingletonPartner(true);
+ if (partner != nullptr) {
+ if (partner->SingletonPartner(false) != part) {
+ tprintf("Ooops! Partition:(%d partners)",
+ part->upper_partners()->length());
+ part->Print();
+ tprintf("has singleton partner:(%d partners",
+ partner->lower_partners()->length());
+ partner->Print();
+ tprintf("but its singleton partner is:");
+ if (partner->SingletonPartner(false) == nullptr)
+ tprintf("NULL\n");
+ else
+ partner->SingletonPartner(false)->Print();
+ }
+ ASSERT_HOST(partner->SingletonPartner(false) == part);
+ } else if (part->SingletonPartner(false) != nullptr) {
+ ColPartitionSet* column_set = best_columns_[gsearch.GridY()];
+ int column_count = column_set->ColumnCount();
+ part->SmoothPartnerRun(column_count * 2 + 1);
+ }
+ }
+}
+
+// Helper functions for TransformToBlocks.
+// Add the part to the temp list in the correct order.
+void ColumnFinder::AddToTempPartList(ColPartition* part,
+ ColPartition_CLIST* temp_list) {
+ int mid_y = part->MidY();
+ ColPartition_C_IT it(temp_list);
+ for (it.mark_cycle_pt(); !it.cycled_list(); it.forward()) {
+ ColPartition* test_part = it.data();
+ if (part->type() == PT_NOISE || test_part->type() == PT_NOISE)
+ continue; // Noise stays in sequence.
+ if (test_part == part->SingletonPartner(false))
+ break; // Insert before its lower partner.
+ int neighbour_bottom = test_part->median_bottom();
+ int neighbour_top = test_part->median_top();
+ int neighbour_y = (neighbour_bottom + neighbour_top) / 2;
+ if (neighbour_y < mid_y)
+ break; // part is above test_part so insert it.
+ if (!part->HOverlaps(*test_part) && !part->WithinSameMargins(*test_part))
+ continue; // Incompatibles stay in order
+ }
+ if (it.cycled_list()) {
+ it.add_to_end(part);
+ } else {
+ it.add_before_stay_put(part);
+ }
+}
+
+// Add everything from the temp list to the work_set assuming correct order.
+void ColumnFinder::EmptyTempPartList(ColPartition_CLIST* temp_list,
+ WorkingPartSet_LIST* work_set) {
+ ColPartition_C_IT it(temp_list);
+ while (!it.empty()) {
+ it.extract()->AddToWorkingSet(bleft_, tright_, resolution_,
+ &good_parts_, work_set);
+ it.forward();
+ }
+}
+
+// Transform the grid of partitions to the output blocks.
+void ColumnFinder::TransformToBlocks(BLOCK_LIST* blocks,
+ TO_BLOCK_LIST* to_blocks) {
+ WorkingPartSet_LIST work_set;
+ ColPartitionSet* column_set = nullptr;
+ ColPartition_IT noise_it(&noise_parts_);
+ // The temp_part_list holds a list of parts at the same grid y coord
+ // so they can be added in the correct order. This prevents thin objects
+ // like horizontal lines going before the text lines above them.
+ ColPartition_CLIST temp_part_list;
+ // Iterate the ColPartitions in the grid. It starts at the top
+ GridSearch<ColPartition, ColPartition_CLIST, ColPartition_C_IT>
+ gsearch(&part_grid_);
+ gsearch.StartFullSearch();
+ int prev_grid_y = -1;
+ ColPartition* part;
+ while ((part = gsearch.NextFullSearch()) != nullptr) {
+ int grid_y = gsearch.GridY();
+ if (grid_y != prev_grid_y) {
+ EmptyTempPartList(&temp_part_list, &work_set);
+ prev_grid_y = grid_y;
+ }
+ if (best_columns_[grid_y] != column_set) {
+ column_set = best_columns_[grid_y];
+ // Every line should have a non-null best column.
+ ASSERT_HOST(column_set != nullptr);
+ column_set->ChangeWorkColumns(bleft_, tright_, resolution_,
+ &good_parts_, &work_set);
+ if (textord_debug_tabfind)
+ tprintf("Changed column groups at grid index %d, y=%d\n",
+ gsearch.GridY(), gsearch.GridY() * gridsize());
+ }
+ if (part->type() == PT_NOISE) {
+ noise_it.add_to_end(part);
+ } else {
+ AddToTempPartList(part, &temp_part_list);
+ }
+ }
+ EmptyTempPartList(&temp_part_list, &work_set);
+ // Now finish all working sets and transfer ColPartitionSets to block_sets.
+ WorkingPartSet_IT work_it(&work_set);
+ while (!work_it.empty()) {
+ WorkingPartSet* working_set = work_it.extract();
+ working_set->ExtractCompletedBlocks(bleft_, tright_, resolution_,
+ &good_parts_, blocks, to_blocks);
+ delete working_set;
+ work_it.forward();
+ }
+}
+
+// Helper reflects a list of blobs in the y-axis.
+// Only reflects the BLOBNBOX bounding box. Not the blobs or outlines below.
+static void ReflectBlobList(BLOBNBOX_LIST* bblobs) {
+ BLOBNBOX_IT it(bblobs);
+ for (it.mark_cycle_pt(); !it.cycled_list(); it.forward()) {
+ it.data()->reflect_box_in_y_axis();
+ }
+}
+
+// Reflect the blob boxes (but not the outlines) in the y-axis so that
+// the blocks get created in the correct RTL order. Reflects the blobs
+// in the input_block and the bblobs list.
+// The reflection is undone in RotateAndReskewBlocks by
+// reflecting the blocks themselves, and then recomputing the blob bounding
+// boxes.
+void ColumnFinder::ReflectForRtl(TO_BLOCK* input_block, BLOBNBOX_LIST* bblobs) {
+ ReflectBlobList(bblobs);
+ ReflectBlobList(&input_block->blobs);
+ ReflectBlobList(&input_block->small_blobs);
+ ReflectBlobList(&input_block->noise_blobs);
+ ReflectBlobList(&input_block->large_blobs);
+ // Update the denorm with the reflection.
+ auto* new_denorm = new DENORM;
+ new_denorm->SetupNormalization(nullptr, nullptr, denorm_,
+ 0.0f, 0.0f, -1.0f, 1.0f, 0.0f, 0.0f);
+ denorm_ = new_denorm;
+}
+
+// Helper fixes up blobs and cblobs to match the desired rotation,
+// exploding multi-outline blobs back to single blobs and accumulating
+// the bounding box widths and heights.
+static void RotateAndExplodeBlobList(const FCOORD& blob_rotation,
+ BLOBNBOX_LIST* bblobs,
+ STATS* widths,
+ STATS* heights) {
+ BLOBNBOX_IT it(bblobs);
+ for (it.mark_cycle_pt(); !it.cycled_list(); it.forward()) {
+ BLOBNBOX* blob = it.data();
+ C_BLOB* cblob = blob->cblob();
+ C_OUTLINE_LIST* outlines = cblob->out_list();
+ C_OUTLINE_IT ol_it(outlines);
+ if (!outlines->singleton()) {
+ // This blob has multiple outlines from CJK repair.
+ // Explode the blob back into individual outlines.
+ for (;!ol_it.empty(); ol_it.forward()) {
+ C_OUTLINE* outline = ol_it.extract();
+ BLOBNBOX* new_blob = BLOBNBOX::RealBlob(outline);
+ // This blob will be revisited later since we add_after_stay_put here.
+ // This means it will get rotated and have its width/height added to
+ // the stats below.
+ it.add_after_stay_put(new_blob);
+ }
+ it.extract();
+ delete cblob;
+ delete blob;
+ } else {
+ if (blob_rotation.x() != 1.0f || blob_rotation.y() != 0.0f) {
+ cblob->rotate(blob_rotation);
+ }
+ blob->compute_bounding_box();
+ widths->add(blob->bounding_box().width(), 1);
+ heights->add(blob->bounding_box().height(), 1);
+ }
+ }
+}
+
+// Undo the deskew that was done in FindTabVectors, as recognition is done
+// without correcting blobs or blob outlines for skew.
+// Reskew the completed blocks to put them back to the original rotated coords
+// that were created by CorrectOrientation.
+// If the input_is_rtl, then reflect the blocks in the y-axis to undo the
+// reflection that was done before FindTabVectors.
+// Blocks that were identified as vertical text (relative to the rotated
+// coordinates) are further rotated so the text lines are horizontal.
+// blob polygonal outlines are rotated to match the position of the blocks
+// that they are in, and their bounding boxes are recalculated to be accurate.
+// Record appropriate inverse transformations and required
+// classifier transformation in the blocks.
+void ColumnFinder::RotateAndReskewBlocks(bool input_is_rtl,
+ TO_BLOCK_LIST* blocks) {
+ if (input_is_rtl) {
+ // The skew is backwards because of the reflection.
+ FCOORD tmp = deskew_;
+ deskew_ = reskew_;
+ reskew_ = tmp;
+ }
+ TO_BLOCK_IT it(blocks);
+ int block_index = 1;
+ for (it.mark_cycle_pt(); !it.cycled_list(); it.forward()) {
+ TO_BLOCK* to_block = it.data();
+ BLOCK* block = to_block->block;
+ // Blocks are created on the deskewed blob outlines in TransformToBlocks()
+ // so we need to reskew them back to page coordinates.
+ if (input_is_rtl) {
+ block->reflect_polygon_in_y_axis();
+ }
+ block->rotate(reskew_);
+ // Copy the right_to_left flag to the created block.
+ block->set_right_to_left(input_is_rtl);
+ // Save the skew angle in the block for baseline computations.
+ block->set_skew(reskew_);
+ block->pdblk.set_index(block_index++);
+ FCOORD blob_rotation = ComputeBlockAndClassifyRotation(block);
+ // Rotate all the blobs if needed and recompute the bounding boxes.
+ // Compute the block median blob width and height as we go.
+ STATS widths(0, block->pdblk.bounding_box().width());
+ STATS heights(0, block->pdblk.bounding_box().height());
+ RotateAndExplodeBlobList(blob_rotation, &to_block->blobs,
+ &widths, &heights);
+ TO_ROW_IT row_it(to_block->get_rows());
+ for (row_it.mark_cycle_pt(); !row_it.cycled_list(); row_it.forward()) {
+ TO_ROW* row = row_it.data();
+ RotateAndExplodeBlobList(blob_rotation, row->blob_list(),
+ &widths, &heights);
+ }
+ block->set_median_size(static_cast<int>(widths.median() + 0.5),
+ static_cast<int>(heights.median() + 0.5));
+ if (textord_debug_tabfind >= 2)
+ tprintf("Block median size = (%d, %d)\n",
+ block->median_size().x(), block->median_size().y());
+ }
+}
+
+// Computes the rotations for the block (to make textlines horizontal) and
+// for the blobs (for classification) and sets the appropriate members
+// of the given block.
+// Returns the rotation that needs to be applied to the blobs to make
+// them sit in the rotated block.
+FCOORD ColumnFinder::ComputeBlockAndClassifyRotation(BLOCK* block) {
+ // The text_rotation_ tells us the gross page text rotation that needs
+ // to be applied for classification
+ // TODO(rays) find block-level classify rotation by orientation detection.
+ // In the mean time, assume that "up" for text printed in the minority
+ // direction (PT_VERTICAL_TEXT) is perpendicular to the line of reading.
+ // Accomplish this by zero-ing out the text rotation. This covers the
+ // common cases of image credits in documents written in Latin scripts
+ // and page headings for predominantly vertically written CJK books.
+ FCOORD classify_rotation(text_rotation_);
+ FCOORD block_rotation(1.0f, 0.0f);
+ if (block->pdblk.poly_block()->isA() == PT_VERTICAL_TEXT) {
+ // Vertical text needs to be 90 degrees rotated relative to the rest.
+ // If the rest has a 90 degree rotation already, use the inverse, making
+ // the vertical text the original way up. Otherwise use 90 degrees
+ // clockwise.
+ if (rerotate_.x() == 0.0f)
+ block_rotation = rerotate_;
+ else
+ block_rotation = FCOORD(0.0f, -1.0f);
+ block->rotate(block_rotation);
+ classify_rotation = FCOORD(1.0f, 0.0f);
+ }
+ block_rotation.rotate(rotation_);
+ // block_rotation is now what we have done to the blocks. Now do the same
+ // thing to the blobs, but save the inverse rotation in the block, as that
+ // is what we need to DENORM back to the image coordinates.
+ FCOORD blob_rotation(block_rotation);
+ block_rotation.set_y(-block_rotation.y());
+ block->set_re_rotation(block_rotation);
+ block->set_classify_rotation(classify_rotation);
+ if (textord_debug_tabfind) {
+ tprintf("Blk %d, type %d rerotation(%.2f, %.2f), char(%.2f,%.2f), box:",
+ block->pdblk.index(), block->pdblk.poly_block()->isA(),
+ block->re_rotation().x(), block->re_rotation().y(),
+ classify_rotation.x(), classify_rotation.y());
+ block->pdblk.bounding_box().print();
+ }
+ return blob_rotation;
+}
+
+} // namespace tesseract.