aboutsummaryrefslogtreecommitdiff
blob: 242b22c8e2ef7b6e09a4d42dc1dacdce6e261ffd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
/* Helper macros for functions returning a narrower type.
   Copyright (C) 2018 Free Software Foundation, Inc.
   This file is part of the GNU C Library.

   The GNU C Library is free software; you can redistribute it and/or
   modify it under the terms of the GNU Lesser General Public
   License as published by the Free Software Foundation; either
   version 2.1 of the License, or (at your option) any later version.

   The GNU C Library is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
   Lesser General Public License for more details.

   You should have received a copy of the GNU Lesser General Public
   License along with the GNU C Library; if not, see
   <http://www.gnu.org/licenses/>.  */

#ifndef	_MATH_NARROW_H
#define	_MATH_NARROW_H	1

#include <bits/floatn.h>
#include <bits/long-double.h>
#include <errno.h>
#include <fenv.h>
#include <ieee754.h>
#include <math-barriers.h>
#include <math_private.h>
#include <fenv_private.h>

/* Carry out a computation using round-to-odd.  The computation is
   EXPR; the union type in which to store the result is UNION and the
   subfield of the "ieee" field of that union with the low part of the
   mantissa is MANTISSA; SUFFIX is the suffix for the libc_fe* macros
   to ensure that the correct rounding mode is used, for platforms
   with multiple rounding modes where those macros set only the
   relevant mode.  This macro does not work correctly if the sign of
   an exact zero result depends on the rounding mode, so that case
   must be checked for separately.  */
#define ROUND_TO_ODD(EXPR, UNION, SUFFIX, MANTISSA)			\
  ({									\
    fenv_t env;								\
    UNION u;								\
									\
    libc_feholdexcept_setround ## SUFFIX (&env, FE_TOWARDZERO);		\
    u.d = (EXPR);							\
    math_force_eval (u.d);						\
    u.ieee.MANTISSA							\
      |= libc_feupdateenv_test ## SUFFIX (&env, FE_INEXACT) != 0;	\
									\
    u.d;								\
  })

/* Check for error conditions from a narrowing add function returning
   RET with arguments X and Y and set errno as needed.  Overflow and
   underflow can occur for finite arguments and a domain error for
   infinite ones.  */
#define CHECK_NARROW_ADD(RET, X, Y)			\
  do							\
    {							\
      if (!isfinite (RET))				\
	{						\
	  if (isnan (RET))				\
	    {						\
	      if (!isnan (X) && !isnan (Y))		\
		__set_errno (EDOM);			\
	    }						\
	  else if (isfinite (X) && isfinite (Y))	\
	    __set_errno (ERANGE);			\
	}						\
      else if ((RET) == 0 && (X) != -(Y))		\
	__set_errno (ERANGE);				\
    }							\
  while (0)

/* Implement narrowing add using round-to-odd.  The arguments are X
   and Y, the return type is TYPE and UNION, MANTISSA and SUFFIX are
   as for ROUND_TO_ODD.  */
#define NARROW_ADD_ROUND_TO_ODD(X, Y, TYPE, UNION, SUFFIX, MANTISSA)	\
  do									\
    {									\
      TYPE ret;								\
									\
      /* Ensure a zero result is computed in the original rounding	\
	 mode.  */							\
      if ((X) == -(Y))							\
	ret = (TYPE) ((X) + (Y));					\
      else								\
	ret = (TYPE) ROUND_TO_ODD (math_opt_barrier (X) + (Y),		\
				   UNION, SUFFIX, MANTISSA);		\
									\
      CHECK_NARROW_ADD (ret, (X), (Y));					\
      return ret;							\
    }									\
  while (0)

/* Implement a narrowing add function that is not actually narrowing
   or where no attempt is made to be correctly rounding (the latter
   only applies to IBM long double).  The arguments are X and Y and
   the return type is TYPE.  */
#define NARROW_ADD_TRIVIAL(X, Y, TYPE)		\
  do						\
    {						\
      TYPE ret;					\
						\
      ret = (TYPE) ((X) + (Y));			\
      CHECK_NARROW_ADD (ret, (X), (Y));		\
      return ret;				\
    }						\
  while (0)

/* Check for error conditions from a narrowing subtract function
   returning RET with arguments X and Y and set errno as needed.
   Overflow and underflow can occur for finite arguments and a domain
   error for infinite ones.  */
#define CHECK_NARROW_SUB(RET, X, Y)			\
  do							\
    {							\
      if (!isfinite (RET))				\
	{						\
	  if (isnan (RET))				\
	    {						\
	      if (!isnan (X) && !isnan (Y))		\
		__set_errno (EDOM);			\
	    }						\
	  else if (isfinite (X) && isfinite (Y))	\
	    __set_errno (ERANGE);			\
	}						\
      else if ((RET) == 0 && (X) != (Y))		\
	__set_errno (ERANGE);				\
    }							\
  while (0)

/* Implement narrowing subtract using round-to-odd.  The arguments are
   X and Y, the return type is TYPE and UNION, MANTISSA and SUFFIX are
   as for ROUND_TO_ODD.  */
#define NARROW_SUB_ROUND_TO_ODD(X, Y, TYPE, UNION, SUFFIX, MANTISSA)	\
  do									\
    {									\
      TYPE ret;								\
									\
      /* Ensure a zero result is computed in the original rounding	\
	 mode.  */							\
      if ((X) == (Y))							\
	ret = (TYPE) ((X) - (Y));					\
      else								\
	ret = (TYPE) ROUND_TO_ODD (math_opt_barrier (X) - (Y),		\
				   UNION, SUFFIX, MANTISSA);		\
									\
      CHECK_NARROW_SUB (ret, (X), (Y));					\
      return ret;							\
    }									\
  while (0)

/* Implement a narrowing subtract function that is not actually
   narrowing or where no attempt is made to be correctly rounding (the
   latter only applies to IBM long double).  The arguments are X and Y
   and the return type is TYPE.  */
#define NARROW_SUB_TRIVIAL(X, Y, TYPE)		\
  do						\
    {						\
      TYPE ret;					\
						\
      ret = (TYPE) ((X) - (Y));			\
      CHECK_NARROW_SUB (ret, (X), (Y));		\
      return ret;				\
    }						\
  while (0)

/* Check for error conditions from a narrowing multiply function
   returning RET with arguments X and Y and set errno as needed.
   Overflow and underflow can occur for finite arguments and a domain
   error for Inf * 0.  */
#define CHECK_NARROW_MUL(RET, X, Y)			\
  do							\
    {							\
      if (!isfinite (RET))				\
	{						\
	  if (isnan (RET))				\
	    {						\
	      if (!isnan (X) && !isnan (Y))		\
		__set_errno (EDOM);			\
	    }						\
	  else if (isfinite (X) && isfinite (Y))	\
	    __set_errno (ERANGE);			\
	}						\
      else if ((RET) == 0 && (X) != 0 && (Y) != 0)	\
	__set_errno (ERANGE);				\
    }							\
  while (0)

/* Implement narrowing multiply using round-to-odd.  The arguments are
   X and Y, the return type is TYPE and UNION, MANTISSA and SUFFIX are
   as for ROUND_TO_ODD.  */
#define NARROW_MUL_ROUND_TO_ODD(X, Y, TYPE, UNION, SUFFIX, MANTISSA)	\
  do									\
    {									\
      TYPE ret;								\
									\
      ret = (TYPE) ROUND_TO_ODD (math_opt_barrier (X) * (Y),		\
				 UNION, SUFFIX, MANTISSA);		\
									\
      CHECK_NARROW_MUL (ret, (X), (Y));					\
      return ret;							\
    }									\
  while (0)

/* Implement a narrowing multiply function that is not actually
   narrowing or where no attempt is made to be correctly rounding (the
   latter only applies to IBM long double).  The arguments are X and Y
   and the return type is TYPE.  */
#define NARROW_MUL_TRIVIAL(X, Y, TYPE)		\
  do						\
    {						\
      TYPE ret;					\
						\
      ret = (TYPE) ((X) * (Y));			\
      CHECK_NARROW_MUL (ret, (X), (Y));		\
      return ret;				\
    }						\
  while (0)

/* Check for error conditions from a narrowing divide function
   returning RET with arguments X and Y and set errno as needed.
   Overflow, underflow and divide-by-zero can occur for finite
   arguments and a domain error for Inf / Inf and 0 / 0.  */
#define CHECK_NARROW_DIV(RET, X, Y)			\
  do							\
    {							\
      if (!isfinite (RET))				\
	{						\
	  if (isnan (RET))				\
	    {						\
	      if (!isnan (X) && !isnan (Y))		\
		__set_errno (EDOM);			\
	    }						\
	  else if (isfinite (X))			\
	    __set_errno (ERANGE);			\
	}						\
      else if ((RET) == 0 && (X) != 0 && !isinf (Y))	\
	__set_errno (ERANGE);				\
    }							\
  while (0)

/* Implement narrowing divide using round-to-odd.  The arguments are
   X and Y, the return type is TYPE and UNION, MANTISSA and SUFFIX are
   as for ROUND_TO_ODD.  */
#define NARROW_DIV_ROUND_TO_ODD(X, Y, TYPE, UNION, SUFFIX, MANTISSA)	\
  do									\
    {									\
      TYPE ret;								\
									\
      ret = (TYPE) ROUND_TO_ODD (math_opt_barrier (X) / (Y),		\
				 UNION, SUFFIX, MANTISSA);		\
									\
      CHECK_NARROW_DIV (ret, (X), (Y));					\
      return ret;							\
    }									\
  while (0)

/* Implement a narrowing divide function that is not actually
   narrowing or where no attempt is made to be correctly rounding (the
   latter only applies to IBM long double).  The arguments are X and Y
   and the return type is TYPE.  */
#define NARROW_DIV_TRIVIAL(X, Y, TYPE)		\
  do						\
    {						\
      TYPE ret;					\
						\
      ret = (TYPE) ((X) / (Y));			\
      CHECK_NARROW_DIV (ret, (X), (Y));		\
      return ret;				\
    }						\
  while (0)

/* The following macros declare aliases for a narrowing function.  The
   sole argument is the base name of a family of functions, such as
   "add".  If any platform changes long double format after the
   introduction of narrowing functions, in a way requiring symbol
   versioning compatibility, additional variants of these macros will
   be needed.  */

#define libm_alias_float_double_main(func)	\
  weak_alias (__f ## func, f ## func)		\
  weak_alias (__f ## func, f32 ## func ## f64)	\
  weak_alias (__f ## func, f32 ## func ## f32x)

#ifdef NO_LONG_DOUBLE
# define libm_alias_float_double(func)		\
  libm_alias_float_double_main (func)		\
  weak_alias (__f ## func, f ## func ## l)
#else
# define libm_alias_float_double(func)		\
  libm_alias_float_double_main (func)
#endif

#define libm_alias_float32x_float64_main(func)			\
  weak_alias (__f32x ## func ## f64, f32x ## func ## f64)

#ifdef NO_LONG_DOUBLE
# define libm_alias_float32x_float64(func)		\
  libm_alias_float32x_float64_main (func)		\
  weak_alias (__f32x ## func ## f64, d ## func ## l)
#elif defined __LONG_DOUBLE_MATH_OPTIONAL
# define libm_alias_float32x_float64(func)			\
  libm_alias_float32x_float64_main (func)			\
  weak_alias (__f32x ## func ## f64, __nldbl_d ## func ## l)
#else
# define libm_alias_float32x_float64(func)	\
  libm_alias_float32x_float64_main (func)
#endif

#if __HAVE_FLOAT128 && !__HAVE_DISTINCT_FLOAT128
# define libm_alias_float_ldouble_f128(func)		\
  weak_alias (__f ## func ## l, f32 ## func ## f128)
# define libm_alias_double_ldouble_f128(func)		\
  weak_alias (__d ## func ## l, f32x ## func ## f128)	\
  weak_alias (__d ## func ## l, f64 ## func ## f128)
#else
# define libm_alias_float_ldouble_f128(func)
# define libm_alias_double_ldouble_f128(func)
#endif

#if __HAVE_FLOAT64X_LONG_DOUBLE
# define libm_alias_float_ldouble_f64x(func)		\
  weak_alias (__f ## func ## l, f32 ## func ## f64x)
# define libm_alias_double_ldouble_f64x(func)		\
  weak_alias (__d ## func ## l, f32x ## func ## f64x)	\
  weak_alias (__d ## func ## l, f64 ## func ## f64x)
#else
# define libm_alias_float_ldouble_f64x(func)
# define libm_alias_double_ldouble_f64x(func)
#endif

#define libm_alias_float_ldouble(func)		\
  weak_alias (__f ## func ## l, f ## func ## l) \
  libm_alias_float_ldouble_f128 (func)		\
  libm_alias_float_ldouble_f64x (func)

#define libm_alias_double_ldouble(func)		\
  weak_alias (__d ## func ## l, d ## func ## l) \
  libm_alias_double_ldouble_f128 (func)		\
  libm_alias_double_ldouble_f64x (func)

#define libm_alias_float64x_float128(func)			\
  weak_alias (__f64x ## func ## f128, f64x ## func ## f128)

#define libm_alias_float32_float128_main(func)			\
  weak_alias (__f32 ## func ## f128, f32 ## func ## f128)

#define libm_alias_float64_float128_main(func)			\
  weak_alias (__f64 ## func ## f128, f64 ## func ## f128)	\
  weak_alias (__f64 ## func ## f128, f32x ## func ## f128)

#if __HAVE_FLOAT64X_LONG_DOUBLE
# define libm_alias_float32_float128(func)	\
  libm_alias_float32_float128_main (func)
# define libm_alias_float64_float128(func)	\
  libm_alias_float64_float128_main (func)
#else
# define libm_alias_float32_float128(func)			\
  libm_alias_float32_float128_main (func)			\
  weak_alias (__f32 ## func ## f128, f32 ## func ## f64x)
# define libm_alias_float64_float128(func)			\
  libm_alias_float64_float128_main (func)			\
  weak_alias (__f64 ## func ## f128, f64 ## func ## f64x)	\
  weak_alias (__f64 ## func ## f128, f32x ## func ## f64x)
#endif

#endif /* math-narrow.h.  */