aboutsummaryrefslogtreecommitdiff
blob: 4941913444e0c482a91314936ae1a9023759153f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
<?xml version="1.0"?>
<html>
  <body>
    <h1 >Remote support</h1>
    <p>
Libvirt allows you to access hypervisors running on remote
machines through authenticated and encrypted connections.
</p>
    <ul>
      <li>
        <a href="#Remote_basic_usage">Basic usage</a>
      </li>
      <li>
        <a href="#Remote_transports">Transports</a>
      </li>
      <li>
        <a href="#Remote_URI_reference">Remote URIs</a>
        <ul>
          <li>
            <a href="#Remote_URI_parameters">Extra parameters</a>
          </li>
        </ul>
      </li>
      <li>
        <a href="#Remote_certificates">Generating TLS certificates</a>
        <ul>
          <li>
            <a href="#Remote_PKI">Public Key Infrastructure set up</a>
          </li>
          <li>
            <a href="#Remote_TLS_background">Background to TLS certificates</a>
          </li>
          <li>
            <a href="#Remote_TLS_CA">Setting up a Certificate Authority (CA)</a>
          </li>
          <li>
            <a href="#Remote_TLS_server_certificates">Issuing server certificates</a>
          </li>
          <li>
            <a href="#Remote_TLS_client_certificates">Issuing client certificates</a>
          </li>
          <li>
            <a href="#Remote_TLS_troubleshooting">Troubleshooting TLS certificate problems</a>
          </li>
        </ul>
      </li>
      <li>
        <a href="#Remote_libvirtd_configuration">libvirtd configuration file</a>
      </li>
      <li>
        <a href="#Remote_IPv6">IPv6 support</a>
      </li>
      <li>
        <a href="#Remote_limitations">Limitations</a>
      </li>
      <li>
        <a href="#Remote_implementation_notes">Implementation notes</a>
      </li>
    </ul>
    <h3>
      <a name="Remote_basic_usage" id="Remote_basic_usage">Basic usage</a>
    </h3>
    <p>
On the remote machine, <code>libvirtd</code> should be running.
See <a href="#Remote_libvirtd_configuration">the section
on configuring libvirtd</a> for more information.
</p>
    <p>
To tell libvirt that you want to access a remote resource,
you should supply a hostname in the normal <a href="uri.html">URI</a> that is passed
to <code>virConnectOpen</code> (or <code>virsh -c ...</code>).
For example, if you normally use <code>qemu:///system</code>
to access the system-wide QEMU daemon, then to access
the system-wide QEMU daemon on a remote machine called
<code>oirase</code> you would use <code>qemu://oirase/system</code>.
</p>
    <p>
The <a href="#Remote_URI_reference">section on remote URIs</a>
describes in more detail these remote URIs.
</p>
    <p>
From an API point of view, apart from the change in URI, the
API should behave the same.  For example, ordinary calls
are routed over the remote connection transparently, and
values or errors from the remote side are returned to you
as if they happened locally.  Some differences you may notice:
</p>
    <ul>
      <li> Additional errors can be generated, specifically ones
relating to failures in the remote transport itself. </li>
      <li> Remote calls are handled synchronously, so they will be
much slower than, say, direct hypervisor calls. </li>
    </ul>
    <h3>
      <a name="Remote_transports" id="Remote_transports">Transports</a>
    </h3>
    <p>
Remote libvirt supports a range of transports:
</p>
    <dl>
      <dt> tls </dt>
      <dd><a href="http://en.wikipedia.org/wiki/Transport_Layer_Security" title="Transport Layer Security">TLS</a>
 1.0 (SSL 3.1) authenticated and encrypted TCP/IP socket, usually
 listening on a public port number.  To use this you will need to
 <a href="#Remote_certificates" title="Generating TLS certificates">generate client and
 server certificates</a>.
 The standard port is 16514.
 </dd>
      <dt> unix </dt>
      <dd> Unix domain socket.  Since this is only accessible on the
 local machine, it is not encrypted, and uses Unix permissions or
 SELinux for authentication.
 The standard socket names are
 <code>/var/run/libvirt/libvirt-sock</code> and
 <code>/var/run/libvirt/libvirt-sock-ro</code> (the latter
 for read-only connections).
 </dd>
      <dt> ssh </dt>
      <dd> Transported over an ordinary
 <a href="http://www.openssh.com/" title="OpenSSH homepage">ssh
 (secure shell)</a> connection.
 Requires <a href="http://netcat.sourceforge.net/">Netcat (nc)</a>
 installed and libvirtd should be running
 on the remote machine.  You should use some sort of
 ssh key management (eg.
 <a href="http://mah.everybody.org/docs/ssh" title="Using ssh-agent with ssh">ssh-agent</a>)
 otherwise programs which use
 this transport will stop to ask for a password. </dd>
      <dt> ext </dt>
      <dd> Any external program which can make a connection to the
 remote machine by means outside the scope of libvirt. </dd>
      <dt> tcp </dt>
      <dd> Unencrypted TCP/IP socket.  Not recommended for production
 use, this is normally disabled, but an administrator can enable
 it for testing or use over a trusted network.
 The standard port is 16509.
 </dd>
    </dl>
    <p>
The default transport, if no other is specified, is <code>tls</code>.
</p>
    <h3>
      <a name="Remote_URI_reference" id="Remote_URI_reference">Remote URIs</a>
    </h3>
    <p>
See also: <a href="uri.html">documentation on ordinary ("local") URIs</a>.
</p>
    <p>
Remote URIs have the general form ("[...]" meaning an optional part):
</p>
    <p><code>driver</code>[<code>+transport</code>]<code>://</code>[<code>username@</code>][<code>hostname</code>][<code>:port</code>]<code>/</code>[<code>path</code>][<code>?extraparameters</code>]
</p>
    <p>
Either the transport or the hostname must be given in order
to distinguish this from a local URI.
</p>
    <p>
Some examples:
</p>
    <ul>
      <li><code>xen+ssh://rjones@towada/</code><br/> &#x2014; Connect to a
remote Xen hypervisor on host <code>towada</code> using ssh transport and ssh
username <code>rjones</code>.
</li>
      <li><code>xen://towada/</code><br/> &#x2014; Connect to a
remote Xen hypervisor on host <code>towada</code> using TLS.
</li>
      <li><code>xen://towada/?no_verify=1</code><br/> &#x2014; Connect to a
remote Xen hypervisor on host <code>towada</code> using TLS.  Do not verify
the server's certificate.
</li>
      <li><code>qemu+unix:///system?socket=/opt/libvirt/run/libvirt/libvirt-sock</code><br/> &#x2014;
Connect to the local qemu instances over a non-standard
Unix socket (the full path to the Unix socket is
supplied explicitly in this case).
</li>
      <li><code>test+tcp://localhost:5000/default</code><br/> &#x2014;
Connect to a libvirtd daemon offering unencrypted TCP/IP connections
on localhost port 5000 and use the test driver with default
settings.
</li>
    </ul>
    <h4>
      <a name="Remote_URI_parameters" id="Remote_URI_parameters">Extra parameters</a>
    </h4>
    <p>
Extra parameters can be added to remote URIs as part
of the query string (the part following <q><code>?</code></q>).
Remote URIs understand the extra parameters shown below.
Any others are passed unmodified through to the back end.
Note that parameter values must be
<a href="http://xmlsoft.org/html/libxml-uri.html#xmlURIEscapeStr">URI-escaped</a>.
</p>
    <table class="top_table">
      <tr>
        <th> Name </th>
        <th> Transports </th>
        <th> Meaning </th>
      </tr>
      <tr>
        <td>
          <code>name</code>
        </td>
        <td>
          <i>any transport</i>
        </td>
        <td>
  The name passed to the remote virConnectOpen function.  The
  name is normally formed by removing transport, hostname, port
  number, username and extra parameters from the remote URI, but in certain
  very complex cases it may be better to supply the name explicitly.
</td>
      </tr>
      <tr>
        <td colspan="2"/>
        <td> Example: <code>name=qemu:///system</code> </td>
      </tr>
      <tr>
        <td>
          <code>command</code>
        </td>
        <td> ssh, ext </td>
        <td>
  The external command.  For ext transport this is required.
  For ssh the default is <code>ssh</code>.
  The PATH is searched for the command.
</td>
      </tr>
      <tr>
        <td colspan="2"/>
        <td> Example: <code>command=/opt/openssh/bin/ssh</code> </td>
      </tr>
      <tr>
        <td>
          <code>socket</code>
        </td>
        <td> unix, ssh </td>
        <td>
  The path to the Unix domain socket, which overrides the
  compiled-in default.  For ssh transport, this is passed to
  the remote netcat command (see next).
</td>
      </tr>
      <tr>
        <td colspan="2"/>
        <td> Example: <code>socket=/opt/libvirt/run/libvirt/libvirt-sock</code> </td>
      </tr>
      <tr>
        <td>
          <code>netcat</code>
        </td>
        <td> ssh </td>
        <td>
  The name of the netcat command on the remote machine.
  The default is <code>nc</code>.  For ssh transport, libvirt
  constructs an ssh command which looks like:

<pre><i>command</i> -p <i>port</i> [-l <i>username</i>] <i>hostname</i> <i>netcat</i> -U <i>socket</i>
</pre>

  where <i>port</i>, <i>username</i>, <i>hostname</i> can be
  specified as part of the remote URI, and <i>command</i>, <i>netcat</i>
  and <i>socket</i> come from extra parameters (or
  sensible defaults).

</td>
      </tr>
      <tr>
        <td colspan="2"/>
        <td> Example: <code>netcat=/opt/netcat/bin/nc</code> </td>
      </tr>
      <tr>
        <td>
          <code>no_verify</code>
        </td>
        <td> tls </td>
        <td>
  If set to a non-zero value, this disables client checks of the
  server's certificate.  Note that to disable server checks of
  the client's certificate or IP address you must
  <a href="#Remote_libvirtd_configuration">change the libvirtd
  configuration</a>.
</td>
      </tr>
      <tr>
        <td colspan="2"/>
        <td> Example: <code>no_verify=1</code> </td>
      </tr>
      <tr>
        <td>
          <code>no_tty</code>
        </td>
        <td> ssh </td>
        <td>
  If set to a non-zero value, this stops ssh from asking for
  a password if it cannot log in to the remote machine automatically
  (eg. using ssh-agent etc.).  Use this when you don't have access
  to a terminal - for example in graphical programs which use libvirt.
</td>
      </tr>
      <tr>
        <td colspan="2"/>
        <td> Example: <code>no_tty=1</code> </td>
      </tr>
    </table>
    <h3>
      <a name="Remote_certificates" id="Remote_certificates">Generating TLS certificates</a>
    </h3>
    <h4>
      <a name="Remote_PKI" id="Remote_PKI">Public Key Infrastructure set up</a>
    </h4>
    <p>
If you are unsure how to create TLS certificates, skip to the
next section.
</p>
    <table class="top_table">
      <tr>
        <th> Location </th>
        <th> Machine </th>
        <th> Description </th>
        <th> Required fields </th>
      </tr>
      <tr>
        <td>
          <code>/etc/pki/CA/cacert.pem</code>
        </td>
        <td> Installed on all clients and servers </td>
        <td> CA's certificate (<a href="#Remote_TLS_CA">more info</a>)</td>
        <td> n/a </td>
      </tr>
      <tr>
        <td>
          <code>/etc/pki/libvirt/ private/serverkey.pem</code>
        </td>
        <td> Installed on the server </td>
        <td> Server's private key (<a href="#Remote_TLS_server_certificates">more info</a>)</td>
        <td> n/a </td>
      </tr>
      <tr>
        <td>
          <code>/etc/pki/libvirt/ servercert.pem</code>
        </td>
        <td> Installed on the server </td>
        <td> Server's certificate signed by the CA.
 (<a href="#Remote_TLS_server_certificates">more info</a>) </td>
        <td> CommonName (CN) must be the hostname of the server as it
  is seen by clients. </td>
      </tr>
      <tr>
        <td>
          <code>/etc/pki/libvirt/ private/clientkey.pem</code>
        </td>
        <td> Installed on the client </td>
        <td> Client's private key. (<a href="#Remote_TLS_client_certificates">more info</a>) </td>
        <td> n/a </td>
      </tr>
      <tr>
        <td>
          <code>/etc/pki/libvirt/ clientcert.pem</code>
        </td>
        <td> Installed on the client </td>
        <td> Client's certificate signed by the CA
  (<a href="#Remote_TLS_client_certificates">more info</a>) </td>
        <td> Distinguished Name (DN) can be checked against an access
  control list (<code>tls_allowed_dn_list</code>).
  </td>
      </tr>
    </table>
    <h4>
      <a name="Remote_TLS_background" id="Remote_TLS_background">Background to TLS certificates</a>
    </h4>
    <p>
Libvirt supports TLS certificates for verifying the identity
of the server and clients.  There are two distinct checks involved:
</p>
    <ul>
      <li> The client should know that it is connecting to the right
server.  Checking done by client by matching the certificate that
the server sends to the server's hostname.  May be disabled by adding
<code>?no_verify=1</code> to the
<a href="#Remote_URI_parameters">remote URI</a>.
</li>
      <li> The server should know that only permitted clients are
connecting.  This can be done based on client's IP address, or on
client's IP address and client's certificate.  Checking done by the
server.  May be enabled and disabled in the <a href="#Remote_libvirtd_configuration">libvirtd.conf file</a>.
</li>
    </ul>
    <p>
For full certificate checking you will need to have certificates
issued by a recognised <a href="http://en.wikipedia.org/wiki/Certificate_authority">Certificate
Authority (CA)</a> for your server(s) and all clients.  To avoid the
expense of getting certificates from a commercial CA, you can set up
your own CA and tell your server(s) and clients to trust certificates
issues by your own CA.  Follow the instructions in the next section.
</p>
    <p>
Be aware that the <a href="#Remote_libvirtd_configuration">default
configuration for libvirtd</a> allows any client to connect provided
they have a valid certificate issued by the CA for their own IP
address.  You may want to change this to make it less (or more)
permissive, depending on your needs.
</p>
    <h4>
      <a name="Remote_TLS_CA" id="Remote_TLS_CA">Setting up a Certificate Authority (CA)</a>
    </h4>
    <p>
You will need the <a href="http://www.gnu.org/software/gnutls/manual/html_node/Invoking-certtool.html">GnuTLS
certtool program documented here</a>.  In Fedora, it is in the
<code>gnutls-utils</code> package.
</p>
    <p>
Create a private key for your CA:
</p>
    <pre>
certtool --generate-privkey &gt; cakey.pem
</pre>
    <p>
and self-sign it by creating a file with the
signature details called
<code>ca.info</code> containing:
</p>
    <pre>
cn = <i>Name of your organization</i>
ca
cert_signing_key
</pre>
    <pre>
certtool --generate-self-signed --load-privkey cakey.pem \
  --template ca.info --outfile cacert.pem
</pre>
    <p>
(You can delete <code>ca.info</code> file now if you
want).
</p>
    <p>
Now you have two files which matter:
</p>
    <ul>
      <li><code>cakey.pem</code> - Your CA's private key (keep this very secret!)
</li>
      <li><code>cacert.pem</code> - Your CA's certificate (this is public).
</li>
    </ul>
    <p><code>cacert.pem</code> has to be installed on clients and
server(s) to let them know that they can trust certificates issued by
your CA.
</p>
    <p>
The normal installation directory for <code>cacert.pem</code>
is <code>/etc/pki/CA/cacert.pem</code> on all clients and servers.
</p>
    <p>
To see the contents of this file, do:
</p>
    <pre><b>certtool -i --infile cacert.pem</b>

X.509 certificate info:

Version: 3
Serial Number (hex): 00
Subject: CN=Red Hat Emerging Technologies
Issuer: CN=Red Hat Emerging Technologies
Signature Algorithm: RSA-SHA
Validity:
        Not Before: Mon Jun 18 16:22:18 2007
        Not After: Tue Jun 17 16:22:18 2008
<i>[etc]</i>
</pre>
    <p>
This is all that is required to set up your CA.  Keep the CA's private
key carefully as you will need it when you come to issue certificates
for your clients and servers.
</p>
    <h4>
      <a name="Remote_TLS_server_certificates" id="Remote_TLS_server_certificates">Issuing server certificates</a>
    </h4>
    <p>
For each server (libvirtd) you need to issue a certificate
with the X.509 CommonName (CN) field set to the hostname
of the server.  The CN must match the hostname which
clients will be using to connect to the server.
</p>
    <p>
In the example below, clients will be connecting to the
server using a <a href="#Remote_URI_reference">URI</a> of
<code>xen://oirase/</code>, so the CN must be "<code>oirase</code>".
</p>
    <p>
Make a private key for the server:
</p>
    <pre>
certtool --generate-privkey &gt; serverkey.pem
</pre>
    <p>
and sign that key with the CA's private key by first
creating a template file called <code>server.info</code>
(only the CN field matters, which as explained above must
be the server's hostname):
</p>
    <pre>
organization = <i>Name of your organization</i>
cn = oirase
tls_www_server
encryption_key
signing_key
</pre>
    <p>
and sign:
</p>
    <pre>
certtool --generate-certificate --load-privkey serverkey.pem \
  --load-ca-certificate cacert.pem --load-ca-privkey cakey.pem \
  --template server.info --outfile servercert.pem
</pre>
    <p>
This gives two files:
</p>
    <ul>
      <li><code>serverkey.pem</code> - The server's private key.
</li>
      <li><code>servercert.pem</code> - The server's public key.
</li>
    </ul>
    <p>
We can examine this certificate and its signature:
</p>
    <pre><b>certtool -i --infile servercert.pem</b>
X.509 certificate info:

Version: 3
Serial Number (hex): 00
Subject: O=Red Hat Emerging Technologies,CN=oirase
Issuer: CN=Red Hat Emerging Technologies
Signature Algorithm: RSA-SHA
Validity:
        Not Before: Mon Jun 18 16:34:49 2007
        Not After: Tue Jun 17 16:34:49 2008
</pre>
    <p>
Note the "Issuer" CN is "Red Hat Emerging Technologies" (the CA) and
the "Subject" CN is "oirase" (the server).
</p>
    <p>
Finally we have two files to install:
</p>
    <ul>
      <li><code>serverkey.pem</code> is
the server's private key which should be copied to the
server <i>only</i> as
<code>/etc/pki/libvirt/private/serverkey.pem</code>.
</li>
      <li><code>servercert.pem</code> is the server's certificate
which can be installed on the server as
<code>/etc/pki/libvirt/servercert.pem</code>.
</li>
    </ul>
    <h4>
      <a name="Remote_TLS_client_certificates" id="Remote_TLS_client_certificates">Issuing client certificates</a>
    </h4>
    <p>
For each client (ie. any program linked with libvirt, such as
<a href="http://virt-manager.et.redhat.com/">virt-manager</a>)
you need to issue a certificate with the X.509 Distinguished Name (DN)
set to a suitable name.  You can decide this on a company / organisation
policy.  For example, I use:
</p>
    <pre>
C=GB,ST=London,L=London,O=Red Hat,CN=<i>name_of_client</i>
</pre>
    <p>
The process is the same as for
<a href="#Remote_TLS_server_certificates">setting up the
server certificate</a> so here we just briefly cover the
steps.
</p>
    <ol>
      <li>
Make a private key:
<pre>
certtool --generate-privkey &gt; clientkey.pem
</pre>
</li>
      <li>
Act as CA and sign the certificate.  Create client.info containing:
<pre>
country = GB
state = London
locality = London
organization = Red Hat
cn = client1
tls_www_client
encryption_key
signing_key
</pre>
and sign by doing:
<pre>
certtool --generate-certificate --load-privkey clientkey.pem \
  --load-ca-certificate cacert.pem --load-ca-privkey cakey.pem \
  --template client.info --outfile clientcert.pem
</pre>
</li>
      <li>
Install the certificates on the client machine:
<pre>
cp clientkey.pem /etc/pki/libvirt/private/clientkey.pem
cp clientcert.pem /etc/pki/libvirt/clientcert.pem
</pre>
</li>
    </ol>
    <h4>
      <a name="Remote_TLS_troubleshooting" id="Remote_TLS_troubleshooting">Troubleshooting TLS certificate problems</a>
    </h4>
    <dl>
      <dt> failed to verify client's certificate </dt>
      <dd>
        <p>
On the server side, run the libvirtd server with
the '--listen' and '--verbose' options while the
client is connecting.  The verbose log messages should
tell you enough to diagnose the problem.
</p>
      </dd>
    </dl>
    <p> You can use the <a href="pki_check.sh">pki_check.sh</a> shell script
to analyze the setup on the client or server machines, preferably as root.
It will try to point out the possible problems and provide solutions to
fix the set up up to a point where you have secure remote access.</p>
    <h3>
      <a name="Remote_libvirtd_configuration" id="Remote_libvirtd_configuration">libvirtd configuration file</a>
    </h3>
    <p>
Libvirtd (the remote daemon) is configured from a file called
<code>/etc/libvirt/libvirtd.conf</code>, or specified on
the command line using <code>-f filename</code> or
<code>--config filename</code>.
</p>
    <p>
This file should contain lines of the form below.
Blank lines and comments beginning with <code>#</code> are ignored.
</p>
    <pre>setting = value</pre>
    <p>The following settings, values and default are:</p>
    <table class="top_table">
      <tr>
        <th> Line </th>
        <th> Default </th>
        <th> Meaning </th>
      </tr>
      <tr>
        <td> listen_tls <i>[0|1]</i> </td>
        <td> 1 (on) </td>
        <td>
  Listen for secure TLS connections on the public TCP/IP port.
  Note: it is also necessary to start the server in listening mode by
  running it with --listen or editing /etc/sysconfig/libvirtd by uncommenting the LIBVIRTD_ARGS="--listen" line
  to cause the server to come up in listening mode whenever it is started.
</td>
      </tr>
      <tr>
        <td> listen_tcp <i>[0|1]</i> </td>
        <td> 0 (off) </td>
        <td>
  Listen for unencrypted TCP connections on the public TCP/IP port.
  Note: it is also necessary to start the server in listening mode.
</td>
      </tr>
      <tr>
        <td> tls_port <i>"service"</i> </td>
        <td> "16514" </td>
        <td>
  The port number or service name to listen on for secure TLS connections.
</td>
      </tr>
      <tr>
        <td> tcp_port <i>"service"</i> </td>
        <td> "16509" </td>
        <td>
  The port number or service name to listen on for unencrypted TCP connections.
</td>
      </tr>
      <tr>
        <td> mdns_adv <i>[0|1]</i> </td>
        <td> 1 (advertise with mDNS) </td>
        <td>
  If set to 1 then the virtualization service will be advertised over
  mDNS to hosts on the local LAN segment.
</td>
      </tr>
      <tr>
        <td> mdns_name <i>"name"</i> </td>
        <td> "Virtualization Host HOSTNAME" </td>
        <td>
  The name to advertise for this host with Avahi mDNS. The default
  includes the machine's short hostname. This must be unique to the
  local LAN segment.
</td>
      </tr>
      <tr>
        <td> unix_sock_group <i>"groupname"</i> </td>
        <td> "root" </td>
        <td>
  The UNIX group to own the UNIX domain socket. If the socket permissions allow
  group access, then applications running under matching group can access the
  socket. Only valid if running as root
</td>
      </tr>
      <tr>
        <td> unix_sock_ro_perms <i>"octal-perms"</i> </td>
        <td> "0777" </td>
        <td>
  The permissions for the UNIX domain socket for read-only client connections.
  The default allows any user to monitor domains.
</td>
      </tr>
      <tr>
        <td> unix_sock_rw_perms <i>"octal-perms"</i> </td>
        <td> "0700" </td>
        <td>
  The permissions for the UNIX domain socket for read-write client connections.
  The default allows only root to manage domains.
</td>
      </tr>
      <tr>
        <td> tls_no_verify_certificate <i>[0|1]</i> </td>
        <td> 0 (certificates are verified) </td>
        <td>
  If set to 1 then if a client certificate check fails, it is not an error.
</td>
      </tr>
      <tr>
        <td> tls_no_verify_address <i>[0|1]</i> </td>
        <td> 0 (addresses are verified) </td>
        <td>
  If set to 1 then if a client IP address check fails, it is not an error.
</td>
      </tr>
      <tr>
        <td> key_file <i>"filename"</i> </td>
        <td> "/etc/pki/libvirt/ private/serverkey.pem" </td>
        <td>
  Change the path used to find the server's private key.
  If you set this to an empty string, then no private key is loaded.
</td>
      </tr>
      <tr>
        <td> cert_file <i>"filename"</i> </td>
        <td> "/etc/pki/libvirt/ servercert.pem" </td>
        <td>
  Change the path used to find the server's certificate.
  If you set this to an empty string, then no certificate is loaded.
</td>
      </tr>
      <tr>
        <td> ca_file <i>"filename"</i> </td>
        <td> "/etc/pki/CA/cacert.pem" </td>
        <td>
  Change the path used to find the trusted CA certificate.
  If you set this to an empty string, then no trusted CA certificate is loaded.
</td>
      </tr>
      <tr>
        <td> crl_file <i>"filename"</i> </td>
        <td> (no CRL file is used) </td>
        <td>
  Change the path used to find the CA certificate revocation list (CRL) file.
  If you set this to an empty string, then no CRL is loaded.
</td>
      </tr>
      <tr>
        <td> tls_allowed_dn_list ["DN1", "DN2"] </td>
        <td> (none - DNs are not checked) </td>
        <td>
          <p>
  Enable an access control list of client certificate Distinguished
  Names (DNs) which can connect to the TLS port on this server.
  </p>
          <p>
  The default is that DNs are not checked.
  </p>
          <p>
  This list may contain wildcards such as <code>"C=GB,ST=London,L=London,O=Red Hat,CN=*"</code>
  See the POSIX <code>fnmatch</code> function for the format
  of the wildcards.
  </p>
          <p>
  Note that if this is an empty list, <i>no client can connect</i>.
  </p>
          <p>
  Note also that GnuTLS returns DNs without spaces
  after commas between the fields (and this is what we check against),
  but the <code>openssl x509</code> tool shows spaces.
</p>
        </td>
      </tr>
    </table>
    <h3>
      <a name="Remote_IPv6" id="Remote_IPv6">IPv6 support</a>
    </h3>
    <p>
The libvirtd service and libvirt remote client driver both use the
<code>getaddrinfo()</code> functions for name resolution and are
thus fully IPv6 enabled. ie, if a server has IPv6 address configured
the daemon will listen for incoming connections on both IPv4 and IPv6
protocols. If a client has an IPv6 address configured and the DNS
address resolved for a service is reachable over IPv6, then an IPv6
connection will be made, otherwise IPv4 will be used. In summary it
should just 'do the right thing(tm)'.
</p>
    <h3>
      <a name="Remote_limitations" id="Remote_limitations">Limitations</a>
    </h3>
    <ul>
      <li> Remote storage: To be fully useful, particularly for
creating new domains, it should be possible to enumerate
and provision storage on the remote machine.  This is currently
in the design phase. </li>
      <li> Migration: We expect libvirt will support migration,
and obviously remote support is what makes migration worthwhile.
This is also in the design phase.  Issues <a href="https://www.redhat.com/mailman/listinfo/libvir-list" title="libvir-list mailing list">to discuss</a> include
which path the migration data should follow (eg. client to
client direct, or client to server to client) and security.
</li>
      <li> Fine-grained authentication: libvirt in general,
but in particular the remote case should support more
fine-grained authentication for operations, rather than
just read-write/read-only as at present.
</li>
    </ul>
    <p>
Please come and discuss these issues and more on <a href="https://www.redhat.com/mailman/listinfo/libvir-list" title="libvir-list mailing list">the mailing list</a>.
</p>
    <h3>
      <a name="Remote_implementation_notes" id="Remote_implementation_notes">Implementation notes</a>
    </h3>
    <p>
The current implementation uses <a href="http://en.wikipedia.org/wiki/External_Data_Representation" title="External Data Representation">XDR</a>-encoded packets with a
simple remote procedure call implementation which also supports
asynchronous messaging and asynchronous and out-of-order replies,
although these latter features are not used at the moment.
</p>
    <p>
The implementation should be considered <b>strictly internal</b> to
libvirt and <b>subject to change at any time without notice</b>.  If
you wish to talk to libvirtd, link to libvirt.  If there is a problem
that means you think you need to use the protocol directly, please
first discuss this on <a href="https://www.redhat.com/mailman/listinfo/libvir-list" title="libvir-list mailing list">the mailing list</a>.
</p>
    <p>
The messaging protocol is described in
<code>qemud/remote_protocol.x</code>.
</p>
    <p>
Authentication and encryption (for TLS) is done using <a href="http://www.gnu.org/software/gnutls/" title="GnuTLS project&#10;page">GnuTLS</a> and the RPC protocol is unaware of this layer.
</p>
    <p>
Protocol messages are sent using a simple 32 bit length word (encoded
XDR int) followed by the message header (XDR
<code>remote_message_header</code>) followed by the message body.  The
length count includes the length word itself, and is measured in
bytes.  Maximum message size is <code>REMOTE_MESSAGE_MAX</code> and to
avoid denial of services attacks on the XDR decoders strings are
individually limited to <code>REMOTE_STRING_MAX</code> bytes.  In the
TLS case, messages may be split over TLS records, but a TLS record
cannot contain parts of more than one message.  In the common RPC case
a single <code>REMOTE_CALL</code> message is sent from client to
server, and the server then replies synchronously with a single
<code>REMOTE_REPLY</code> message, but other forms of messaging are
also possible.
</p>
    <p>
The protocol contains support for multiple program types and protocol
versioning, modelled after SunRPC.
</p>
  </body>
</html>