summaryrefslogtreecommitdiff
blob: 1481fd7e486651f89820bda1b6e686e03e528e42 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
///////////////////////////////////////////////////////////////////////
// File:        weightmatrix.cpp
// Description: Hides distinction between float/int implementations.
// Author:      Ray Smith
//
// (C) Copyright 2014, Google Inc.
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
// http://www.apache.org/licenses/LICENSE-2.0
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
///////////////////////////////////////////////////////////////////////

#include "weightmatrix.h"

#include <cassert>              // for assert
#include "intsimdmatrix.h"
#include "simddetect.h"         // for DotProduct
#include "statistc.h"
#include "tprintf.h"

namespace tesseract {

#if defined(ANDROID)
static inline double log2(double n) {
  return log(n) / log(2.0);
}
#endif // ANDROID

// Number of iterations after which the correction effectively becomes unity.
const int kAdamCorrectionIterations = 200000;
// Epsilon in Adam to prevent division by zero.
const double kAdamEpsilon = 1e-8;

// Computes matrix.vector v = Wu.
// u is of size W.dim2() - add_bias_fwd and the output v is of size
// W.dim1() - skip_bias_back.
// If add_bias_fwd, u is imagined to have an extra element at the end with value
// 1, to implement the bias, weight.
// If skip_bias_back, we are actually performing the backwards product on a
// transposed matrix, so we need to drop the v output corresponding to the last
// element in dim1.
static inline void MatrixDotVectorInternal(const GENERIC_2D_ARRAY<double>& w,
                                           bool add_bias_fwd,
                                           bool skip_bias_back, const double* u,
                                           double* v) {
  int num_results = w.dim1() - skip_bias_back;
  int extent = w.dim2() - add_bias_fwd;
  for (int i = 0; i < num_results; ++i) {
    const double* wi = w[i];
    double total = DotProduct(wi, u, extent);
    if (add_bias_fwd) total += wi[extent];  // The bias value.
    v[i] = total;
  }
}

// Copies the whole input transposed, converted to double, into *this.
void TransposedArray::Transpose(const GENERIC_2D_ARRAY<double>& input) {
  int width = input.dim1();
  int num_features = input.dim2();
  ResizeNoInit(num_features, width);
  for (int t = 0; t < width; ++t) WriteStrided(t, input[t]);
}

// Destructor.
// It is defined here, so the compiler can create a single vtable
// instead of weak vtables in every compilation unit.
TransposedArray::~TransposedArray() = default;

// Sets up the network for training. Initializes weights using weights of
// scale `range` picked according to the random number generator `randomizer`.
int WeightMatrix::InitWeightsFloat(int no, int ni, bool use_adam,
                                   float weight_range, TRand* randomizer) {
  int_mode_ = false;
  wf_.Resize(no, ni, 0.0);
  if (randomizer != nullptr) {
    for (int i = 0; i < no; ++i) {
      for (int j = 0; j < ni; ++j) {
        wf_[i][j] = randomizer->SignedRand(weight_range);
      }
    }
  }
  use_adam_ = use_adam;
  InitBackward();
  return ni * no;
}

// Changes the number of outputs to the size of the given code_map, copying
// the old weight matrix entries for each output from code_map[output] where
// non-negative, and uses the mean (over all outputs) of the existing weights
// for all outputs with negative code_map entries. Returns the new number of
// weights.
int WeightMatrix::RemapOutputs(const std::vector<int>& code_map) {
  GENERIC_2D_ARRAY<double> old_wf(wf_);
  int old_no = wf_.dim1();
  int new_no = code_map.size();
  int ni = wf_.dim2();
  std::vector<double> means(ni, 0.0);
  for (int c = 0; c < old_no; ++c) {
    const double* weights = wf_[c];
    for (int i = 0; i < ni; ++i) means[i] += weights[i];
  }
  for (double& mean : means) mean /= old_no;
  wf_.ResizeNoInit(new_no, ni);
  InitBackward();
  for (int dest = 0; dest < new_no; ++dest) {
    int src = code_map[dest];
    const double* src_data = src >= 0 ? old_wf[src] : means.data();
    memcpy(wf_[dest], src_data, ni * sizeof(*src_data));
  }
  return ni * new_no;
}

// Converts a float network to an int network. Each set of input weights that
// corresponds to a single output weight is converted independently:
// Compute the max absolute value of the weight set.
// Scale so the max absolute value becomes INT8_MAX.
// Round to integer.
// Store a multiplicative scale factor (as a double) that will reproduce
// the original value, subject to rounding errors.
void WeightMatrix::ConvertToInt() {
  wi_.ResizeNoInit(wf_.dim1(), wf_.dim2());
  scales_.reserve(wi_.dim1());
  int dim2 = wi_.dim2();
  for (int t = 0; t < wi_.dim1(); ++t) {
    double* f_line = wf_[t];
    int8_t* i_line = wi_[t];
    double max_abs = 0.0;
    for (int f = 0; f < dim2; ++f) {
      double abs_val = fabs(f_line[f]);
      if (abs_val > max_abs) max_abs = abs_val;
    }
    double scale = max_abs / INT8_MAX;
    scales_.push_back(scale / INT8_MAX);
    if (scale == 0.0) scale = 1.0;
    for (int f = 0; f < dim2; ++f) {
      i_line[f] = IntCastRounded(f_line[f] / scale);
    }
  }
  wf_.Resize(1, 1, 0.0);
  int_mode_ = true;
  if (IntSimdMatrix::intSimdMatrix) {
    int32_t rounded_num_out;
    IntSimdMatrix::intSimdMatrix->Init(wi_, shaped_w_, rounded_num_out);
    scales_.resize(rounded_num_out);
  }
}

// Allocates any needed memory for running Backward, and zeroes the deltas,
// thus eliminating any existing momentum.
void WeightMatrix::InitBackward() {
  int no = int_mode_ ? wi_.dim1() : wf_.dim1();
  int ni = int_mode_ ? wi_.dim2() : wf_.dim2();
  dw_.Resize(no, ni, 0.0);
  updates_.Resize(no, ni, 0.0);
  wf_t_.Transpose(wf_);
  if (use_adam_) dw_sq_sum_.Resize(no, ni, 0.0);
}

// Flag on mode to indicate that this weightmatrix uses int8_t.
const int kInt8Flag = 1;
// Flag on mode to indicate that this weightmatrix uses adam.
const int kAdamFlag = 4;
// Flag on mode to indicate that this weightmatrix uses double. Set
// independently of kInt8Flag as even in int mode the scales can
// be float or double.
const int kDoubleFlag = 128;

// Writes to the given file. Returns false in case of error.
bool WeightMatrix::Serialize(bool training, TFile* fp) const {
  // For backward compatibility, add kDoubleFlag to mode to indicate the doubles
  // format, without errs, so we can detect and read old format weight matrices.
  uint8_t mode =
      (int_mode_ ? kInt8Flag : 0) | (use_adam_ ? kAdamFlag : 0) | kDoubleFlag;
  if (!fp->Serialize(&mode)) return false;
  if (int_mode_) {
    if (!wi_.Serialize(fp)) return false;
    // The scales stored in memory have an extra factor applied to them
    // to allow faster operation. We have to remove that factor here
    // before writing to disc.
    auto scales = scales_;
    for (auto& scale : scales) {
      scale *= INT8_MAX;
    }
    uint32_t size = scales.size();
    if (!fp->Serialize(&size)) return false;
    if (!fp->Serialize(&scales[0], size)) return false;
  } else {
    if (!wf_.Serialize(fp)) return false;
    if (training && !updates_.Serialize(fp)) return false;
    if (training && use_adam_ && !dw_sq_sum_.Serialize(fp)) return false;
  }
  return true;
}

// Reads from the given file. Returns false in case of error.

bool WeightMatrix::DeSerialize(bool training, TFile* fp) {
  uint8_t mode;
  if (!fp->DeSerialize(&mode)) return false;
  int_mode_ = (mode & kInt8Flag) != 0;
  use_adam_ = (mode & kAdamFlag) != 0;
  if ((mode & kDoubleFlag) == 0) return DeSerializeOld(training, fp);
  if (int_mode_) {
    if (!wi_.DeSerialize(fp)) return false;
    uint32_t size;
    if (!fp->DeSerialize(&size)) return false;
    scales_.resize(size);
    if (!fp->DeSerialize(&scales_[0], size)) return false;
    for (auto& scale : scales_) {
      scale /= INT8_MAX;
    }
    if (IntSimdMatrix::intSimdMatrix) {
      int32_t rounded_num_out;
      IntSimdMatrix::intSimdMatrix->Init(wi_, shaped_w_, rounded_num_out);
      scales_.resize(rounded_num_out);
    }
  } else {
    if (!wf_.DeSerialize(fp)) return false;
    if (training) {
      InitBackward();
      if (!updates_.DeSerialize(fp)) return false;
      if (use_adam_ && !dw_sq_sum_.DeSerialize(fp)) return false;
    }
  }
  return true;
}

// As DeSerialize, but reads an old (float) format WeightMatrix for
// backward compatibility.
bool WeightMatrix::DeSerializeOld(bool training, TFile* fp) {
  GENERIC_2D_ARRAY<float> float_array;
  if (int_mode_) {
    if (!wi_.DeSerialize(fp)) return false;
    GenericVector<float> old_scales;
    if (!old_scales.DeSerialize(fp)) return false;
    scales_.reserve(old_scales.size());
    for (int i = 0; i < old_scales.size(); ++i) {
      scales_.push_back(old_scales[i]);
    }
  } else {
    if (!float_array.DeSerialize(fp)) return false;
    FloatToDouble(float_array, &wf_);
  }
  if (training) {
    InitBackward();
    if (!float_array.DeSerialize(fp)) return false;
    FloatToDouble(float_array, &updates_);
    // Errs was only used in int training, which is now dead.
    if (!float_array.DeSerialize(fp)) return false;
  }
  return true;
}

// Computes matrix.vector v = Wu.
// u is of size W.dim2() - 1 and the output v is of size W.dim1().
// u is imagined to have an extra element at the end with value 1, to
// implement the bias, but it doesn't actually have it.
// Asserts that the call matches what we have.
void WeightMatrix::MatrixDotVector(const double* u, double* v) const {
  assert(!int_mode_);
  MatrixDotVectorInternal(wf_, true, false, u, v);
}

void WeightMatrix::MatrixDotVector(const int8_t* u, double* v) const {
  assert(int_mode_);
  if (IntSimdMatrix::intSimdMatrix) {
    IntSimdMatrix::intSimdMatrix->matrixDotVectorFunction(
      wi_.dim1(), wi_.dim2(), &shaped_w_[0], &scales_[0], u, v);
  } else {
    IntSimdMatrix::MatrixDotVector(wi_, scales_, u, v);
  }
}

// MatrixDotVector for peep weights, MultiplyAccumulate adds the
// component-wise products of *this[0] and v to inout.
void WeightMatrix::MultiplyAccumulate(const double* v, double* inout) {
  assert(!int_mode_);
  assert(wf_.dim1() == 1);
  int n = wf_.dim2();
  const double* u = wf_[0];
  for (int i = 0; i < n; ++i) {
    inout[i] += u[i] * v[i];
  }
}

// Computes vector.matrix v = uW.
// u is of size W.dim1() and the output v is of size W.dim2() - 1.
// The last result is discarded, as v is assumed to have an imaginary
// last value of 1, as with MatrixDotVector.
void WeightMatrix::VectorDotMatrix(const double* u, double* v) const {
  assert(!int_mode_);
  MatrixDotVectorInternal(wf_t_, false, true, u, v);
}

// Fills dw_[i][j] with the dot product u[i][] . v[j][], using elements from
// u and v. In terms of the neural network, u is the gradients and v is the
// inputs.
// Note that (matching MatrixDotVector) v[last][] is missing, presumed 1.0.
// Runs parallel if requested. Note that u and v must be transposed.
void WeightMatrix::SumOuterTransposed(const TransposedArray& u,
                                      const TransposedArray& v,
                                      bool in_parallel) {
  assert(!int_mode_);
  int num_outputs = dw_.dim1();
  assert(u.dim1() == num_outputs);
  assert(u.dim2() == v.dim2());
  int num_inputs = dw_.dim2() - 1;
  int num_samples = u.dim2();
  // v is missing the last element in dim1.
  assert(v.dim1() == num_inputs);
#ifdef _OPENMP
#pragma omp parallel for num_threads(4) if (in_parallel)
#endif
  for (int i = 0; i < num_outputs; ++i) {
    double* dwi = dw_[i];
    const double* ui = u[i];
    for (int j = 0; j < num_inputs; ++j) {
      dwi[j] = DotProduct(ui, v[j], num_samples);
    }
    // The last element of v is missing, presumed 1.0f.
    double total = 0.0;
    for (int k = 0; k < num_samples; ++k) total += ui[k];
    dwi[num_inputs] = total;
  }
}

// Updates the weights using the given learning rate and momentum.
// num_samples is the quotient to be used in the adam computation iff
// use_adam_ is true.
void WeightMatrix::Update(double learning_rate, double momentum,
                          double adam_beta, int num_samples) {
  assert(!int_mode_);
  if (use_adam_ && num_samples > 0 && num_samples < kAdamCorrectionIterations) {
    learning_rate *= sqrt(1.0 - pow(adam_beta, num_samples));
    learning_rate /= 1.0 - pow(momentum, num_samples);
  }
  if (use_adam_ && num_samples > 0 && momentum > 0.0) {
    dw_sq_sum_.SumSquares(dw_, adam_beta);
    dw_ *= learning_rate * (1.0 - momentum);
    updates_ *= momentum;
    updates_ += dw_;
    wf_.AdamUpdate(updates_, dw_sq_sum_, learning_rate * kAdamEpsilon);
  } else {
    dw_ *= learning_rate;
    updates_ += dw_;
    if (momentum > 0.0) wf_ += updates_;
    if (momentum >= 0.0) updates_ *= momentum;
  }
  wf_t_.Transpose(wf_);
}

// Adds the dw_ in other to the dw_ is *this.
void WeightMatrix::AddDeltas(const WeightMatrix& other) {
  assert(dw_.dim1() == other.dw_.dim1());
  assert(dw_.dim2() == other.dw_.dim2());
  dw_ += other.dw_;
}

// Sums the products of weight updates in *this and other, splitting into
// positive (same direction) in *same and negative (different direction) in
// *changed.
void WeightMatrix::CountAlternators(const WeightMatrix& other, double* same,
                                    double* changed) const {
  int num_outputs = updates_.dim1();
  int num_inputs = updates_.dim2();
  assert(num_outputs == other.updates_.dim1());
  assert(num_inputs == other.updates_.dim2());
  for (int i = 0; i < num_outputs; ++i) {
    const double* this_i = updates_[i];
    const double* other_i = other.updates_[i];
    for (int j = 0; j < num_inputs; ++j) {
      double product = this_i[j] * other_i[j];
      if (product < 0.0)
        *changed -= product;
      else
        *same += product;
    }
  }
}

// Helper computes an integer histogram bucket for a weight and adds it
// to the histogram.
const int kHistogramBuckets = 16;
static void HistogramWeight(double weight, STATS* histogram) {
  int bucket = kHistogramBuckets - 1;
  if (weight != 0.0) {
    double logval = -log2(fabs(weight));
    bucket = ClipToRange(IntCastRounded(logval), 0, kHistogramBuckets - 1);
  }
  histogram->add(bucket, 1);
}

void WeightMatrix::Debug2D(const char* msg) {
  STATS histogram(0, kHistogramBuckets);
  if (int_mode_) {
    for (int i = 0; i < wi_.dim1(); ++i) {
      for (int j = 0; j < wi_.dim2(); ++j) {
        HistogramWeight(wi_[i][j] * scales_[i], &histogram);
      }
    }
  } else {
    for (int i = 0; i < wf_.dim1(); ++i) {
      for (int j = 0; j < wf_.dim2(); ++j) {
        HistogramWeight(wf_[i][j], &histogram);
      }
    }
  }
  tprintf("%s\n", msg);
  histogram.print();
}

// Utility function converts an array of float to the corresponding array
// of double.
/* static */
void WeightMatrix::FloatToDouble(const GENERIC_2D_ARRAY<float>& wf,
                                 GENERIC_2D_ARRAY<double>* wd) {
  int dim1 = wf.dim1();
  int dim2 = wf.dim2();
  wd->ResizeNoInit(dim1, dim2);
  for (int i = 0; i < dim1; ++i) {
    const float* wfi = wf[i];
    double* wdi = (*wd)[i];
    for (int j = 0; j < dim2; ++j) wdi[j] = static_cast<double>(wfi[j]);
  }
}

}  // namespace tesseract.