/* Copyright (C) 2001-2021 Artifex Software, Inc. All Rights Reserved. This software is provided AS-IS with no warranty, either express or implied. This software is distributed under license and may not be copied, modified or distributed except as expressly authorized under the terms of the license contained in the file LICENSE in this distribution. Refer to licensing information at http://www.artifex.com or contact Artifex Software, Inc., 1305 Grant Avenue - Suite 200, Novato, CA 94945, U.S.A., +1(415)492-9861, for further information. */ /* Color space management and writing for pdfwrite driver */ #include "math_.h" #include "memory_.h" #include "gx.h" #include "gscspace.h" /* for gscie.h */ #include "gscdevn.h" #include "gscie.h" #include "gscindex.h" #include "gscsepr.h" #include "stream.h" #include "gsicc.h" #include "gserrors.h" #include "gsfunc.h" /* required for colour space function evaluation */ #include "gsfunc3.h" /* Required to create a replacement linear interpolation function */ #include "gsfunc0.h" /* Required to create a sampled function for DeviceN alternate replacement */ #include "gdevpdfx.h" #include "gdevpdfg.h" #include "gdevpdfc.h" #include "gdevpdfo.h" #include "strimpl.h" #include "sstring.h" #include "gxcspace.h" #include "gxcdevn.h" #include "gscspace.h" #include "gsicc_manage.h" #include "gsicc_cache.h" /* * PDF doesn't have general CIEBased color spaces. However, it provides * two methods for handling general CIE spaces: * * - For PDF 1.2 and above, we note that the transformation from L*a*b* * space to XYZ space is invertible, so we can handle any PostScript * CIEBased space by transforming color values in that space to XYZ, * then inverse-transforming them to L*a*b* and using a PDF Lab space * with the same WhitePoint and BlackPoint and appropriate ranges for * a and b. This approach has the drawback that Y values outside the * range [0..1] can't be represented: we just clamp them. * * - For PDF 1.3 and above, we can create an ICCBased space. This is * actually necessary, not just an option, because for shadings (also * introduced in PDF 1.3), we want color interpolation to occur in the * original space. * * The Lab approach is not currently implemented, because it requires * transforming all the sample values of images. The ICCBased approach is * implemented for color spaces whose ranges lie within [0..1], which are * the only ranges supported by the ICC standard: we think that removing * this limitation would also require transforming image sample values. */ /* GC descriptors */ public_st_pdf_color_space(); /* ------ CIE space testing ------ */ /* Test whether a cached CIE procedure is the identity function. */ #define CIE_CACHE_IS_IDENTITY(pc)\ ((pc)->floats.params.is_identity) #define CIE_CACHE3_IS_IDENTITY(pca)\ (CIE_CACHE_IS_IDENTITY(&(pca)[0]) &&\ CIE_CACHE_IS_IDENTITY(&(pca)[1]) &&\ CIE_CACHE_IS_IDENTITY(&(pca)[2])) /* * Test whether a cached CIE procedure is an exponential. A cached * procedure is exponential iff f(x) = k*(x^p). We make a very cursory * check for this: we require that f(0) = 0, set k = f(1), set p = * log[a](f(a)/k), and then require that f(b) = k*(b^p), where a and b are * two arbitrarily chosen values between 0 and 1. Naturally all this is * done with some slop. */ #define CC_INDEX_A (gx_cie_cache_size / 3) #define CC_INDEX_B (gx_cie_cache_size * 2 / 3) #define CC_INDEX_1 (gx_cie_cache_size - 1) #define CC_KEY(i) ((i) / (double)CC_INDEX_1) #define CC_KEY_A CC_KEY(CC_INDEX_A) #define CC_KEY_B CC_KEY(CC_INDEX_B) static bool cie_values_are_exponential(double v0, double va, double vb, double k, float *pexpt) { double p; if (fabs(v0) >= 0.001 || fabs(k) < 0.001) return false; if (va == 0 || (va > 0) != (k > 0)) return false; p = log(va / k) / log(CC_KEY_A); if (fabs(vb - k * pow(CC_KEY_B, p)) >= 0.001) return false; *pexpt = p; return true; } static bool cie_scalar_cache_is_exponential(const gx_cie_scalar_cache * pc, float *pexpt) { return cie_values_are_exponential(pc->floats.values[0], pc->floats.values[CC_INDEX_A], pc->floats.values[CC_INDEX_B], pc->floats.values[CC_INDEX_1], pexpt); } #define CIE_SCALAR3_CACHE_IS_EXPONENTIAL(pca, expts)\ (cie_scalar_cache_is_exponential(&(pca)[0], &(expts).u) &&\ cie_scalar_cache_is_exponential(&(pca)[1], &(expts).v) &&\ cie_scalar_cache_is_exponential(&(pca)[2], &(expts).w)) static bool cie_vector_cache_is_exponential(const gx_cie_vector_cache * pc, float *pexpt) { return cie_values_are_exponential(pc->vecs.values[0].u, pc->vecs.values[CC_INDEX_A].u, pc->vecs.values[CC_INDEX_B].u, pc->vecs.values[CC_INDEX_1].u, pexpt); } #define CIE_VECTOR3_CACHE_IS_EXPONENTIAL(pca, expts)\ (cie_vector_cache_is_exponential(&(pca)[0], &(expts).u) &&\ cie_vector_cache_is_exponential(&(pca)[1], &(expts).v) &&\ cie_vector_cache_is_exponential(&(pca)[2], &(expts).w)) #undef CC_INDEX_A #undef CC_INDEX_B #undef CC_KEY_A #undef CC_KEY_B /* * Test whether a cached CIEBasedABC space consists only of a single * Decode step followed by a single Matrix step. */ static cie_cache_one_step_t cie_cached_abc_is_one_step(const gs_cie_abc *pcie, const gs_matrix3 **ppmat) { /* The order of steps is, DecodeABC, MatrixABC, DecodeLMN, MatrixLMN. */ if (CIE_CACHE3_IS_IDENTITY(pcie->common.caches.DecodeLMN)) { if (pcie->MatrixABC.is_identity) { *ppmat = &pcie->common.MatrixLMN; return ONE_STEP_ABC; } if (pcie->common.MatrixLMN.is_identity) { *ppmat = &pcie->MatrixABC; return ONE_STEP_ABC; } } if (CIE_CACHE3_IS_IDENTITY(pcie->caches.DecodeABC.caches)) { if (pcie->MatrixABC.is_identity) { *ppmat = &pcie->common.MatrixLMN; return ONE_STEP_LMN; } } return ONE_STEP_NOT; } /* * Test whether a cached CIEBasedABC space is a L*a*b* space. */ static bool cie_scalar_cache_is_lab_lmn(const gs_cie_abc *pcie, int i) { double k = CC_KEY(i); double g = (k >= 6.0 / 29 ? k * k * k : (k - 4.0 / 29) * (108.0 / 841)); #define CC_V(j,i) (pcie->common.caches.DecodeLMN[j].floats.values[i]) #define CC_WP(uvw) (pcie->common.points.WhitePoint.uvw) return (fabs(CC_V(0, i) - g * CC_WP(u)) < 0.001 && fabs(CC_V(1, i) - g * CC_WP(v)) < 0.001 && fabs(CC_V(2, i) - g * CC_WP(w)) < 0.001 ); #undef CC_V #undef CC_WP } static bool cie_vector_cache_is_lab_abc(const gx_cie_vector_cache3_t *pvc, int i) { const gx_cie_vector_cache *const pc3 = pvc->caches; double k = CC_KEY(i); double l0 = pc3[0].vecs.params.base, l = l0 + k * (pc3[0].vecs.params.limit - l0); double a0 = pc3[1].vecs.params.base, a = a0 + k * (pc3[1].vecs.params.limit - a0); double b0 = pc3[2].vecs.params.base, b = b0 + k * (pc3[2].vecs.params.limit - b0); return (fabs(cie_cached2float(pc3[0].vecs.values[i].u) - (l + 16) / 116) < 0.001 && fabs(cie_cached2float(pc3[1].vecs.values[i].u) - a / 500) < 0.001 && fabs(cie_cached2float(pc3[2].vecs.values[i].w) - b / -200) < 0.001 ); } static bool cie_is_lab(const gs_cie_abc *pcie) { int i; /* Check MatrixABC and MatrixLMN. */ if (!(pcie->MatrixABC.cu.u == 1 && pcie->MatrixABC.cu.v == 1 && pcie->MatrixABC.cu.w == 1 && pcie->MatrixABC.cv.u == 1 && pcie->MatrixABC.cv.v == 0 && pcie->MatrixABC.cv.w == 0 && pcie->MatrixABC.cw.u == 0 && pcie->MatrixABC.cw.v == 0 && pcie->MatrixABC.cw.w == -1 && pcie->common.MatrixLMN.is_identity )) return false; /* Check DecodeABC and DecodeLMN. */ for (i = 0; i <= CC_INDEX_1; ++i) if (!(cie_vector_cache_is_lab_abc(&pcie->caches.DecodeABC, i) && cie_scalar_cache_is_lab_lmn(pcie, i) )) return false; return true; } #undef CC_INDEX_1 #undef CC_KEY /* Test whether one or more CIE-based ranges are [0..1]. */ static bool cie_ranges_are_0_1(const gs_range *prange, int n) { int i; for (i = 0; i < n; ++i) if (prange[i].rmin != 0 || prange[i].rmax != 1) return false; return true; } /* ------ Utilities ------ */ /* Add a 3-element vector to a Cos array or dictionary. */ static int cos_array_add_vector3(cos_array_t *pca, const gs_vector3 *pvec) { int code = cos_array_add_real(pca, pvec->u); if (code >= 0) code = cos_array_add_real(pca, pvec->v); if (code >= 0) code = cos_array_add_real(pca, pvec->w); return code; } static int cos_dict_put_c_key_vector3(gx_device_pdf *pdev, cos_dict_t *pcd, const char *key, const gs_vector3 *pvec) { cos_array_t *pca = cos_array_alloc(pdev, "cos_array_from_vector3"); int code; if (pca == 0) return_error(gs_error_VMerror); code = cos_array_add_vector3(pca, pvec); if (code < 0) { COS_FREE(pca, "cos_array_from_vector3"); return code; } return cos_dict_put_c_key_object(pcd, key, COS_OBJECT(pca)); } /* * Finish creating a CIE-based color space (Calxxx or Lab.) * This procedure is exported for gdevpdfk.c. */ int pdf_finish_cie_space(gx_device_pdf *pdev, cos_array_t *pca, cos_dict_t *pcd, const gs_cie_common *pciec) { int code = cos_dict_put_c_key_vector3(pdev, pcd, "/WhitePoint", &pciec->points.WhitePoint); if (code < 0) return code; if (pciec->points.BlackPoint.u != 0 || pciec->points.BlackPoint.v != 0 || pciec->points.BlackPoint.w != 0 ) { code = cos_dict_put_c_key_vector3(pdev, pcd, "/BlackPoint", &pciec->points.BlackPoint); if (code < 0) return code; } return cos_array_add_object(pca, COS_OBJECT(pcd)); } /* ------ Color space writing ------ */ /* Define standard and short color space names. */ const pdf_color_space_names_t pdf_color_space_names = { PDF_COLOR_SPACE_NAMES }; const pdf_color_space_names_t pdf_color_space_names_short = { PDF_COLOR_SPACE_NAMES_SHORT }; /* * Create a local Device{Gray,RGB,CMYK} color space corresponding to the * given number of components. */ int pdf_cspace_init_Device(gs_memory_t *mem, gs_color_space **ppcs, int num_components) { switch (num_components) { case 1: *ppcs = gs_cspace_new_DeviceGray(mem); break; case 3: *ppcs = gs_cspace_new_DeviceRGB(mem); break; case 4: *ppcs = gs_cspace_new_DeviceCMYK(mem); break; default: return_error(gs_error_rangecheck); } if (*ppcs == NULL) return_error(gs_error_VMerror); return 0; } int pdf_delete_sampled_base_space_function(gx_device_pdf *pdev, gs_function_t *pfn) { gs_function_Sd_params_t *params = (gs_function_Sd_params_t *)&pfn->params; gs_free_object(pdev->memory, (void *)params->Domain, "pdf_delete_function"); gs_free_object(pdev->memory, (void *)params->Range, "pdf_delete_function"); gs_free_string(pdev->memory, (void *)params->DataSource.data.str.data, params->DataSource.data.str.size, "pdf_dselete_function"); gs_free_object(pdev->memory, (void *)pfn, "pdf_delete_function"); return 0; } int pdf_delete_base_space_function(gx_device_pdf *pdev, gs_function_t *pfn) { gs_function_ElIn_params_t *params = (gs_function_ElIn_params_t *)&pfn->params; gs_free_object(pdev->memory, (void *)params->Domain, "pdf_delete_function"); gs_free_object(pdev->memory, (void *)params->Range, "pdf_delete_function"); gs_free_object(pdev->memory, (void *)params->C0, "pdf_delete_function"); gs_free_object(pdev->memory, (void *)params->C1, "pdf_delete_function"); gs_free_object(pdev->memory, (void *)pfn, "pdf_delete_function"); return 0; } int pdf_make_sampled_base_space_function(gx_device_pdf *pdev, gs_function_t **pfn, int nSrcComp, int nDstComp, byte *data) { gs_function_Sd_params_t params; void *ptr1, *ptr2; int i, code; gs_const_string str; str.size = nDstComp * (uint)pow(2, nSrcComp); str.data = gs_alloc_string(pdev->memory, str.size, "pdf_DeviceN"); memcpy((void *)str.data, data, str.size); params.m = nSrcComp; params.n = nDstComp; params.Order = 1; params.BitsPerSample = 8; ptr1 = gs_alloc_byte_array(pdev->memory, nSrcComp, sizeof(int), "pdf_make_function(Domain)"); for (i=0;imemory, 2 * nSrcComp, sizeof(float), "pdf_make_function(Domain)"); if (ptr1 == 0) { return gs_note_error(gs_error_VMerror); } ptr2 = (float *) gs_alloc_byte_array(pdev->memory, 2 * nDstComp, sizeof(float), "pdf_make_function(Range)"); if (ptr2 == 0) { gs_free_object(pdev->memory, (void *)ptr1, "pdf_make_function(Range)"); return gs_note_error(gs_error_VMerror); } for (i=0;imemory); return code; } int pdf_make_base_space_function(gx_device_pdf *pdev, gs_function_t **pfn, int ncomp, float *data_low, float *data_high) { gs_function_ElIn_params_t params; float *ptr1, *ptr2; int i, code; ptr1 = (float *) gs_alloc_byte_array(pdev->memory, 2, sizeof(float), "pdf_make_function(Domain)"); if (ptr1 == 0) { return gs_note_error(gs_error_VMerror); } ptr2 = (float *) gs_alloc_byte_array(pdev->memory, 2 * ncomp, sizeof(float), "pdf_make_function(Range)"); if (ptr2 == 0) { gs_free_object(pdev->memory, (void *)ptr1, "pdf_make_function(Range)"); return gs_note_error(gs_error_VMerror); } params.m = 1; params.n = ncomp; params.N = 1.0f; ptr1[0] = 0.0f; ptr1[1] = 1.0f; for (i=0;imemory, ncomp, sizeof(float), "pdf_make_function(C0)"); if (ptr1 == 0) { gs_free_object(pdev->memory, (void *)params.Domain, "pdf_make_function(C0)"); gs_free_object(pdev->memory, (void *)params.Range, "pdf_make_function(C0)"); return gs_note_error(gs_error_VMerror); } ptr2 = (float *)gs_alloc_byte_array(pdev->memory, ncomp, sizeof(float), "pdf_make_function(C1)"); if (ptr2 == 0) { gs_free_object(pdev->memory, (void *)params.Domain, "pdf_make_function(C1)"); gs_free_object(pdev->memory, (void *)params.Range, "pdf_make_function(C1)"); gs_free_object(pdev->memory, (void *)ptr1, "pdf_make_function(C1)"); return gs_note_error(gs_error_VMerror); } for (i=0;imemory); if (code < 0) { gs_free_object(pdev->memory, (void *)params.Domain, "pdf_make_function"); gs_free_object(pdev->memory, (void *)params.Range, "pdf_make_function"); gs_free_object(pdev->memory, (void *)params.C0, "pdf_make_function"); gs_free_object(pdev->memory, (void *)params.C1, "pdf_make_function"); } return code; } /* Create a Separation or DeviceN color space (internal). */ static int pdf_separation_color_space(gx_device_pdf *pdev, const gs_gstate * pgs, cos_array_t *pca, const char *csname, const cos_value_t *snames, const gs_color_space *alt_space, const gs_function_t *pfn, const pdf_color_space_names_t *pcsn, const cos_value_t *v_attributes) { cos_value_t v; const gs_range_t *ranges; int code, csi; /* We need to think about the alternate space. If we are producing * PDF/X or PDF/A we can't produce some device spaces, and the code in * pdf_color_space_named always allows device spaces. We could alter * that code, but by then we don't know its an Alternate space, and have * lost the tin transform procedure. So instead we check here. */ csi = gs_color_space_get_index(alt_space); /* Note that if csi is ICC, check to see if this was one of the default substitutes that we introduced for DeviceGray, DeviceRGB or DeviceCMYK. If it is, then just write the default color. Depending upon the flavor of PDF, or other options, we may want to actually have all the colors defined by ICC profiles and not do the following substituion of the Device space. */ if (csi == gs_color_space_index_ICC) { csi = gsicc_get_default_type(alt_space->cmm_icc_profile_data); } if (csi == gs_color_space_index_DeviceRGB && (pdev->PDFX || (pdev->PDFA != 0 && (pdev->pcm_color_info_index == gs_color_space_index_DeviceCMYK)))) { /* * We shouldn't get here. If someoone is using PDF/X or PDF/A then they should *also* * set ColorConversionStrategy, and any Separation or DeviceN space should have been * converted earlier. If we somehow do get here (eg user set PDFA but *ddin't* set * ColorConversionStrategy) then return a rangecheck error. Earlier code will then * fall back to writing a device space. */ dmprintf(pdev->pdf_memory, "Attempting to write a DeviceN space with an inappropriate alternate,\nhave you set ColorConversionStrategy ?\n"); return gs_error_rangecheck; } if (csi == gs_color_space_index_DeviceCMYK && (pdev->PDFA != 0 && (pdev->pcm_color_info_index == gs_color_space_index_DeviceRGB))) { dmprintf(pdev->pdf_memory, "Attempting to write a DeviceN space with an inappropriate alternate,\nhave you set ColorConversionStrategy ?\n"); return gs_error_rangecheck; } if ((code = cos_array_add(pca, cos_c_string_value(&v, csname))) < 0 || (code = cos_array_add(pca, snames)) < 0 || (code = pdf_color_space_named(pdev, pgs, &v, &ranges, alt_space, pcsn, false, NULL, 0, false)) < 0 || (code = cos_array_add(pca, &v)) < 0 || (code = pdf_function_scaled(pdev, pfn, ranges, &v)) < 0 || (code = cos_array_add(pca, &v)) < 0 || (v_attributes != NULL ? code = cos_array_add(pca, v_attributes) : 0) < 0 ) return code; return 0; } /* * Create an Indexed color space. This is a single-use procedure, * broken out only for readability. */ int pdf_indexed_color_space(gx_device_pdf *pdev, const gs_gstate * pgs, cos_value_t *pvalue, const gs_color_space *pcs, cos_array_t *pca, cos_value_t *cos_base) { const gs_indexed_params *pip = &pcs->params.indexed; const gs_color_space *base_space = pcs->base_space; int num_entries = pip->hival + 1; int num_components = gs_color_space_num_components(base_space); uint table_size = num_entries * num_components; /* Guess at the extra space needed for PS string encoding. */ uint string_size = 2 + table_size * 4; uint string_used; byte buf[100]; /* arbitrary */ stream_AXE_state st; stream s, es; gs_memory_t *mem = pdev->pdf_memory; byte *table; byte *palette; cos_value_t v; int code; /* PDF doesn't support Indexed color spaces with more than 256 entries. */ if (num_entries > 256) return_error(gs_error_rangecheck); if (pdev->CompatibilityLevel < 1.3 && !pdev->ForOPDFRead) { switch (gs_color_space_get_index(pcs)) { case gs_color_space_index_Pattern: case gs_color_space_index_Separation: case gs_color_space_index_Indexed: case gs_color_space_index_DeviceN: return_error(gs_error_rangecheck); default: DO_NOTHING; } } table = gs_alloc_string(mem, string_size, "pdf_color_space(table)"); palette = gs_alloc_string(mem, table_size, "pdf_color_space(palette)"); if (table == 0 || palette == 0) { gs_free_string(mem, palette, table_size, "pdf_color_space(palette)"); gs_free_string(mem, table, string_size, "pdf_color_space(table)"); return_error(gs_error_VMerror); } s_init(&s, mem); swrite_string(&s, table, string_size); s_init(&es, mem); s_init_state((stream_state *)&st, &s_PSSE_template, NULL); s_init_filter(&es, (stream_state *)&st, buf, sizeof(buf), &s); sputc(&s, '('); if (pcs->params.indexed.use_proc) { gs_client_color cmin, cmax; byte *pnext = palette; int i, j; /* Find the legal range for the color components. */ for (j = 0; j < num_components; ++j) cmin.paint.values[j] = (float)min_long, cmax.paint.values[j] = (float)max_long; gs_color_space_restrict_color(&cmin, base_space); gs_color_space_restrict_color(&cmax, base_space); /* * Compute the palette values, with the legal range for each * one mapped to [0 .. 255]. */ for (i = 0; i < num_entries; ++i) { gs_client_color cc; gs_cspace_indexed_lookup(pcs, i, &cc); for (j = 0; j < num_components; ++j) { float v = (cc.paint.values[j] - cmin.paint.values[j]) * 255 / (cmax.paint.values[j] - cmin.paint.values[j]); *pnext++ = (v <= 0 ? 0 : v >= 255 ? 255 : (byte)v); } } } else memcpy(palette, pip->lookup.table.data, table_size); if (gs_color_space_get_index(base_space) == gs_color_space_index_DeviceRGB ) { /* Check for an all-gray palette3. */ int i; for (i = table_size; (i -= 3) >= 0; ) if (palette[i] != palette[i + 1] || palette[i] != palette[i + 2] ) break; if (i < 0) { /* Change the color space to DeviceGray. */ for (i = 0; i < num_entries; ++i) palette[i] = palette[i * 3]; table_size = num_entries; base_space = gs_cspace_new_DeviceGray(mem); if (base_space == NULL) return_error(gs_error_VMerror); } } stream_write(&es, palette, table_size); gs_free_string(mem, palette, table_size, "pdf_color_space(palette)"); /* Another case where we use sclose() and not sclose_filters(), because the * buffer we supplied to s_init_filter is a heap based C object, so we * must not free it. */ sclose(&es); sflush(&s); string_used = (uint)stell(&s); table = gs_resize_string(mem, table, string_size, string_used, "pdf_color_space(table)"); /* * Since the array is always referenced by name as a resource * rather than being written as a value, even for in-line images, * always use the full name for the color space. * * We don't have to worry about the range of the base space: * in PDF, unlike PostScript, the values from the lookup table are * scaled automatically. */ if (cos_base == NULL) { if ((code = pdf_color_space_named(pdev, pgs, pvalue, NULL, base_space, &pdf_color_space_names, false, NULL, 0, false)) < 0 || (code = cos_array_add(pca, cos_c_string_value(&v, pdf_color_space_names.Indexed /*pcsn->Indexed*/))) < 0 || (code = cos_array_add(pca, pvalue)) < 0 || (code = cos_array_add_int(pca, pip->hival)) < 0 || (code = cos_array_add_no_copy(pca, cos_string_value(&v, table, string_used))) < 0 ) return code; } else { code = cos_array_add(pca, cos_c_string_value(&v, pdf_color_space_names.Indexed)); if (code < 0) return code; code = cos_array_add(pca, cos_base); if (code < 0) return code; code = cos_array_add_int(pca, pip->hival); if (code < 0) return code; code = cos_array_add_no_copy(pca, cos_string_value(&v, table, string_used)); if (code < 0) return code; } return 0; } /* * Find a color space resource by seriialized data. */ static pdf_resource_t * pdf_find_cspace_resource(gx_device_pdf *pdev, const byte *serialized, uint serialized_size) { pdf_resource_t **pchain = pdev->resources[resourceColorSpace].chains; pdf_resource_t *pres; int i; for (i = 0; i < NUM_RESOURCE_CHAINS; i++) { for (pres = pchain[i]; pres != 0; pres = pres->next) { const pdf_color_space_t *const ppcs = (const pdf_color_space_t *)pres; if (ppcs->serialized_size != serialized_size) continue; if (!memcmp(ppcs->serialized, serialized, ppcs->serialized_size)) return pres; } } return NULL; } int pdf_convert_ICC(gx_device_pdf *pdev, const gs_color_space *pcs, cos_value_t *pvalue, const pdf_color_space_names_t *pcsn) { gs_color_space_index csi; int code; csi = gs_color_space_get_index(pcs); if (csi == gs_color_space_index_ICC) { csi = gsicc_get_default_type(pcs->cmm_icc_profile_data); } if (csi == gs_color_space_index_Indexed) { pcs = pcs->base_space; csi = gs_color_space_get_index(pcs); } if (csi == gs_color_space_index_ICC) { if (pcs->cmm_icc_profile_data == NULL || pdev->CompatibilityLevel < 1.3 ) { if (pcs->base_space != NULL) { return 0; } else { int num_des_comps; cmm_dev_profile_t *dev_profile; /* determine number of components in device space */ code = dev_proc((gx_device *)pdev, get_profile)((gx_device *)pdev, &dev_profile); if (code < 0) return code; num_des_comps = gsicc_get_device_profile_comps(dev_profile); /* Set image color space to be device space */ switch( num_des_comps ) { case 1: cos_c_string_value(pvalue, pcsn->DeviceGray); /* negative return means we do conversion */ return -1; case 3: cos_c_string_value(pvalue, pcsn->DeviceRGB); return -1; case 4: cos_c_string_value(pvalue, pcsn->DeviceCMYK); return -1; default: break; } } } } return 0; } /* * Create a PDF color space corresponding to a PostScript color space. * For parameterless color spaces, set *pvalue to a (literal) string with * the color space name; for other color spaces, create a cos_array_t if * necessary and set *pvalue to refer to it. In the latter case, if * by_name is true, return a string /Rxxxx rather than a reference to * the actual object. * * If ppranges is not NULL, then if the domain of the color space had * to be scaled (to convert a CIEBased space to ICCBased), store a pointer * to the ranges in *ppranges, otherwise set *ppranges to 0. */ int pdf_color_space_named(gx_device_pdf *pdev, const gs_gstate * pgs, cos_value_t *pvalue, const gs_range_t **ppranges, const gs_color_space *pcs_in, const pdf_color_space_names_t *pcsn, bool by_name, const byte *res_name, int name_length, bool keepICC) { const gs_color_space *pcs = pcs_in; gs_color_space_index csi; cos_array_t *pca; cos_dict_t *pcd; cos_value_t v; const gs_cie_common *pciec; gs_function_t *pfn; const gs_range_t *ranges = 0; uint serialized_size = 0; byte *serialized = NULL, serialized0[100]; pdf_resource_t *pres = NULL; int code; bool is_lab = false; csi = gs_color_space_get_index(pcs); /* Note that if csi is ICC, check to see if this was one of the default substitutes that we introduced for DeviceGray, DeviceRGB or DeviceCMYK. If it is, then just write the default color. Depending upon the flavor of PDF, or other options, we may want to actually have all the colors defined by ICC profiles and not do the following substituion of the Device space. */ if (csi == gs_color_space_index_ICC && !keepICC) { csi = gsicc_get_default_type(pcs->cmm_icc_profile_data); } if (ppranges) *ppranges = 0; /* default */ switch (csi) { case gs_color_space_index_DeviceGray: cos_c_string_value(pvalue, pcsn->DeviceGray); return 0; case gs_color_space_index_DeviceRGB: cos_c_string_value(pvalue, pcsn->DeviceRGB); return 0; case gs_color_space_index_DeviceCMYK: cos_c_string_value(pvalue, pcsn->DeviceCMYK); return 0; case gs_color_space_index_Pattern: if (!pcs->params.pattern.has_base_space) { cos_c_string_value(pvalue, "/Pattern"); return 0; } break; case gs_color_space_index_ICC: /* * Take a special early exit for unrecognized ICCBased color spaces, * or for PDF 1.2 output (ICCBased color spaces date from PDF 1.3). */ if (pcs->cmm_icc_profile_data == NULL || pdev->CompatibilityLevel < 1.3 ) { if (res_name != NULL) return 0; /* Ignore .includecolorspace */ if (pcs->base_space != NULL) { return pdf_color_space_named( pdev, pgs, pvalue, ppranges, pcs->base_space, pcsn, by_name, NULL, 0, keepICC); } else { switch( cs_num_components(pcs) ) { case 1: cos_c_string_value(pvalue, pcsn->DeviceGray); return 0; case 3: cos_c_string_value(pvalue, pcsn->DeviceRGB); return 0; case 4: cos_c_string_value(pvalue, pcsn->DeviceCMYK); return 0; default: break; } } } break; default: break; } /* Check whether we already have a PDF object for this color space. */ if (pcs->id != gs_no_id) pres = pdf_find_resource_by_gs_id(pdev, resourceColorSpace, pcs->id); if (pres == NULL) { stream s; s_init(&s, pdev->memory); swrite_position_only(&s); code = cs_serialize(pcs, &s); if (code < 0) return_error(gs_error_unregistered); /* Must not happen. */ serialized_size = stell(&s); /* I think this is another case where we use sclose() and not sclose_filters(). * It seems like we don't actually write anything, but it allows us to find the * length of the serialised data. No buffer hre, so we must no call * s_close_filters() as that will try to free it. */ sclose(&s); if (serialized_size <= sizeof(serialized0)) serialized = serialized0; else { serialized = gs_alloc_bytes(pdev->pdf_memory, serialized_size, "pdf_color_space"); if (serialized == NULL) return_error(gs_error_VMerror); } swrite_string(&s, serialized, serialized_size); code = cs_serialize(pcs, &s); if (code < 0) return_error(gs_error_unregistered); /* Must not happen. */ if (stell(&s) != serialized_size) return_error(gs_error_unregistered); /* Must not happen. */ sclose(&s); pres = pdf_find_cspace_resource(pdev, serialized, serialized_size); if (pres != NULL) { if (serialized != serialized0) gs_free_object(pdev->pdf_memory, serialized, "pdf_color_space"); serialized = NULL; } } if (pres) { const pdf_color_space_t *const ppcs = (const pdf_color_space_t *)pres; if (ppranges != 0 && ppcs->ranges != 0) *ppranges = ppcs->ranges; pca = (cos_array_t *)pres->object; goto ret; } /* Space has parameters -- create an array. */ pca = cos_array_alloc(pdev, "pdf_color_space"); if (pca == 0) return_error(gs_error_VMerror); switch (csi) { case gs_color_space_index_ICC: code = pdf_iccbased_color_space(pdev, pgs, pvalue, pcs, pca); break; case gs_color_space_index_CIEA: { /* Check that we can represent this as a CalGray space. */ const gs_cie_a *pcie = pcs->params.a; bool unitary = cie_ranges_are_0_1(&pcie->RangeA, 1); bool identityA = (pcie->MatrixA.u == 1 && pcie->MatrixA.v == 1 && pcie->MatrixA.w == 1); gs_vector3 expts; pciec = (const gs_cie_common *)pcie; if (!pcie->common.MatrixLMN.is_identity) { if (!pdev->ForOPDFRead) { if (pcs->icc_equivalent == 0) { code = gs_colorspace_set_icc_equivalent((gs_color_space *)pcs, &is_lab, pdev->memory); if (code < 0) return code; } code = pdf_iccbased_color_space(pdev, pgs, pvalue, pcs->icc_equivalent, pca); if (pcs->params.a->RangeA.rmin < 0.0 || pcs->params.a->RangeA.rmax > 1.0) ranges = &pcs->params.a->RangeA; } else { code = pdf_convert_cie_space(pdev, pca, pcs, "GRAY", pciec, &pcie->RangeA, ONE_STEP_NOT, NULL, &ranges); } break; } if (unitary && identityA && CIE_CACHE_IS_IDENTITY(&pcie->caches.DecodeA) && CIE_SCALAR3_CACHE_IS_EXPONENTIAL(pcie->common.caches.DecodeLMN, expts) && expts.v == expts.u && expts.w == expts.u ) { DO_NOTHING; } else if (unitary && identityA && CIE_CACHE3_IS_IDENTITY(pcie->common.caches.DecodeLMN) && cie_vector_cache_is_exponential(&pcie->caches.DecodeA, &expts.u) ) { DO_NOTHING; } else { if (!pdev->ForOPDFRead) { if (pcs->icc_equivalent == 0) { code = gs_colorspace_set_icc_equivalent((gs_color_space *)pcs, &is_lab, pdev->memory); if (code < 0) return code; } code = pdf_iccbased_color_space(pdev, pgs, pvalue, pcs->icc_equivalent, pca); if (pcs->params.a->RangeA.rmin < 0.0 || pcs->params.a->RangeA.rmax > 1.0) ranges = &pcs->params.a->RangeA; } else { code = pdf_convert_cie_space(pdev, pca, pcs, "GRAY", pciec, &pcie->RangeA, ONE_STEP_NOT, NULL, &ranges); } break; } code = cos_array_add(pca, cos_c_string_value(&v, "/CalGray")); if (code < 0) return code; pcd = cos_dict_alloc(pdev, "pdf_color_space(dict)"); if (pcd == 0) return_error(gs_error_VMerror); if (expts.u != 1) { code = cos_dict_put_c_key_real(pcd, "/Gamma", expts.u); if (code < 0) return code; } } cal: /* Finish handling a CIE-based color space (Calxxx or Lab). */ if (code < 0) return code; code = pdf_finish_cie_space(pdev, pca, pcd, pciec); break; case gs_color_space_index_CIEABC: { /* Check that we can represent this as a CalRGB space. */ const gs_cie_abc *pcie = pcs->params.abc; bool unitary = cie_ranges_are_0_1(pcie->RangeABC.ranges, 3); gs_vector3 expts; const gs_matrix3 *pmat = NULL; cie_cache_one_step_t one_step = cie_cached_abc_is_one_step(pcie, &pmat); pciec = (const gs_cie_common *)pcie; if (unitary) { switch (one_step) { case ONE_STEP_ABC: if (CIE_VECTOR3_CACHE_IS_EXPONENTIAL(pcie->caches.DecodeABC.caches, expts)) goto calrgb; break; case ONE_STEP_LMN: if (CIE_SCALAR3_CACHE_IS_EXPONENTIAL(pcie->common.caches.DecodeLMN, expts)) goto calrgb; default: break; } } if (cie_is_lab(pcie)) { /* Represent this as a Lab space. */ pcd = cos_dict_alloc(pdev, "pdf_color_space(dict)"); if (pcd == 0) return_error(gs_error_VMerror); code = pdf_put_lab_color_space(pdev, pca, pcd, pcie->RangeABC.ranges); goto cal; } else { if (!pdev->ForOPDFRead) { int i; if (pcs->icc_equivalent == 0) { code = gs_colorspace_set_icc_equivalent((gs_color_space *)pcs, &is_lab, pdev->memory); if (code < 0) return code; } code = pdf_iccbased_color_space(pdev, pgs, pvalue, pcs->icc_equivalent, pca); for (i = 0; i < 3; ++i) { double rmin = pcs->params.abc->RangeABC.ranges[i].rmin, rmax = pcs->params.abc->RangeABC.ranges[i].rmax; if (rmin < 0.0 || rmax > 1.0) ranges = pcs->params.abc->RangeABC.ranges; } } else { code = pdf_convert_cie_space(pdev, pca, pcs, "RGB ", pciec, pcie->RangeABC.ranges, one_step, pmat, &ranges); } break; } calrgb: code = cos_array_add(pca, cos_c_string_value(&v, "/CalRGB")); if (code < 0) return code; pcd = cos_dict_alloc(pdev, "pdf_color_space(dict)"); if (pcd == 0) return_error(gs_error_VMerror); if (expts.u != 1 || expts.v != 1 || expts.w != 1) { code = cos_dict_put_c_key_vector3(pdev, pcd, "/Gamma", &expts); if (code < 0) return code; } if (!pmat->is_identity) { cos_array_t *pcma = cos_array_alloc(pdev, "pdf_color_space(Matrix)"); if (pcma == 0) return_error(gs_error_VMerror); if ((code = cos_array_add_vector3(pcma, &pmat->cu)) < 0 || (code = cos_array_add_vector3(pcma, &pmat->cv)) < 0 || (code = cos_array_add_vector3(pcma, &pmat->cw)) < 0 || (code = cos_dict_put(pcd, (const byte *)"/Matrix", 7, COS_OBJECT_VALUE(&v, pcma))) < 0 ) return code; } } goto cal; case gs_color_space_index_CIEDEF: if (!pdev->ForOPDFRead) { int i; if (pcs->icc_equivalent == 0) { code = gs_colorspace_set_icc_equivalent((gs_color_space *)pcs, &is_lab, pdev->memory); if (code < 0) return code; } code = pdf_iccbased_color_space(pdev, pgs, pvalue, pcs->icc_equivalent, pca); for (i = 0; i < 3; ++i) { double rmin = pcs->params.def->RangeDEF.ranges[i].rmin, rmax = pcs->params.def->RangeDEF.ranges[i].rmax; if (rmin < 0.0 || rmax > 1.0) ranges = pcs->params.def->RangeDEF.ranges; } } else { code = pdf_convert_cie_space(pdev, pca, pcs, "RGB ", (const gs_cie_common *)pcs->params.def, pcs->params.def->RangeDEF.ranges, ONE_STEP_NOT, NULL, &ranges); } break; case gs_color_space_index_CIEDEFG: if (!pdev->ForOPDFRead) { int i; if (pcs->icc_equivalent == 0) { code = gs_colorspace_set_icc_equivalent((gs_color_space *)pcs, &is_lab, pdev->memory); if (code < 0) return code; } code = pdf_iccbased_color_space(pdev, pgs, pvalue, pcs->icc_equivalent, pca); for (i = 0; i < 4; ++i) { double rmin = pcs->params.defg->RangeDEFG.ranges[i].rmin, rmax = pcs->params.defg->RangeDEFG.ranges[i].rmax; if (rmin < 0.0 || rmax > 1.0) ranges = pcs->params.defg->RangeDEFG.ranges; } } else { code = pdf_convert_cie_space(pdev, pca, pcs, "CMYK", (const gs_cie_common *)pcs->params.defg, pcs->params.defg->RangeDEFG.ranges, ONE_STEP_NOT, NULL, &ranges); } break; case gs_color_space_index_Indexed: code = pdf_indexed_color_space(pdev, pgs, pvalue, pcs, pca, NULL); break; case gs_color_space_index_DeviceN: if (!pdev->PreserveDeviceN) return_error(gs_error_rangecheck); if (pdev->CompatibilityLevel < 1.3) return_error(gs_error_rangecheck); pfn = gs_cspace_get_devn_function(pcs); /****** CURRENTLY WE ONLY HANDLE Functions ******/ if (pfn == 0) return_error(gs_error_rangecheck); { cos_array_t *psna = cos_array_alloc(pdev, "pdf_color_space(DeviceN)"); int i; byte *name_string; uint name_string_length; cos_value_t v_attributes, *va = NULL; pdf_resource_t *pres_attributes = NULL; if (psna == 0) return_error(gs_error_VMerror); for (i = 0; i < pcs->params.device_n.num_components; ++i) { name_string = (byte *)pcs->params.device_n.names[i]; name_string_length = strlen(pcs->params.device_n.names[i]); code = pdf_string_to_cos_name(pdev, name_string, name_string_length, &v); if (code < 0) return code; code = cos_array_add(psna, &v); cos_value_free((const cos_value_t *)&v, pdev->pdf_memory, "pdf_color_space(DeviceN component)"); if (code < 0) return code; } COS_OBJECT_VALUE(&v, psna); /* If we have either /Process or /Colorants (or both) then we need to create an * attributes dictionary. */ if (pcs->params.device_n.devn_process_space != NULL || pcs->params.device_n.colorants != NULL) { cos_value_t v_Subtype_name; code = pdf_alloc_resource(pdev, resourceOther, 0, &pres_attributes, -1); if (code < 0) return code; cos_become(pres_attributes->object, cos_type_dict); if (pcs->params.device_n.subtype == gs_devicen_DeviceN) { code = pdf_string_to_cos_name(pdev, (const byte *)"DeviceN", 7, &v_Subtype_name); if (code < 0) return code; } else { if (pcs->params.device_n.subtype == gs_devicen_NChannel) { code = pdf_string_to_cos_name(pdev, (const byte *)"NChannel", 8, &v_Subtype_name); if (code < 0) return code; } else return gs_note_error(gs_error_typecheck); } code = cos_dict_put((cos_dict_t *)pres_attributes->object, (const byte *)"/Subtype", 8, &v_Subtype_name); cos_value_free((const cos_value_t *)&v_Subtype_name, pdev->pdf_memory, "pdf_color_space(Subtype)"); if (code < 0) return code; } if (pcs->params.device_n.devn_process_space != NULL) { cos_dict_t *process; cos_array_t *components; cos_value_t v_process, v_components, v_process_space, v_process_name; int m; process = cos_dict_alloc(pdev, "pdf_color_space(DeviceN)"); if (process == NULL) return_error(gs_error_VMerror); COS_OBJECT_VALUE(&v_process, process); code = cos_dict_put((cos_dict_t *)pres_attributes->object, (const byte *)"/Process", 8, &v_process); if (code < 0) return code; code = pdf_color_space_named(pdev, pgs, &v_process_space, NULL, pcs->params.device_n.devn_process_space, pcsn, false, NULL, 0, keepICC); if (code < 0) return code; code = pdf_string_to_cos_name(pdev, (const byte *)"ColorSpace", 10, &v_process_name); if (code < 0) return code; code = cos_dict_put(process, v_process_name.contents.chars.data, v_process_name.contents.chars.size, &v_process_space); cos_value_free((const cos_value_t *)&v_process_name, pdev->pdf_memory, "pdf_color_space(ColorSpace)"); if (code < 0) return code; components = cos_array_alloc(pdev, "pdf_color_space(DeviceN)"); if (components == NULL) { return_error(gs_error_VMerror); } COS_OBJECT_VALUE(&v_components, components); code = cos_dict_put((cos_dict_t *)process, (const byte *)"/Components", 11, &v_components); if (code < 0) return code; for (m=0;m < pcs->params.device_n.num_process_names;m++) { code = pdf_string_to_cos_name(pdev, (const byte *)pcs->params.device_n.process_names[m], strlen(pcs->params.device_n.process_names[m]), &v_process_name); if (code < 0) return code; code = cos_array_put(components, m, &v_process_name); cos_value_free((const cos_value_t *)&v_process_name, pdev->pdf_memory, "pdf_color_space(process_name)"); if (code < 0) return code; } } if (pcs->params.device_n.colorants != NULL) { cos_dict_t *colorants = cos_dict_alloc(pdev, "pdf_color_space(DeviceN)"); cos_value_t v_colorants, v_separation, v_colorant_name; const gs_device_n_colorant *csa; if (colorants == NULL) return_error(gs_error_VMerror); COS_OBJECT_VALUE(&v_colorants, colorants); code = cos_dict_put((cos_dict_t *)pres_attributes->object, (const byte *)"/Colorants", 10, &v_colorants); if (code < 0) return code; for (csa = pcs->params.device_n.colorants; csa != NULL; csa = csa->next) { name_string = (byte *)csa->colorant_name; name_string_length = strlen((const char *)name_string); code = pdf_color_space_named(pdev, pgs, &v_separation, NULL, csa->cspace, pcsn, false, NULL, 0, keepICC); if (code < 0) return code; code = pdf_string_to_cos_name(pdev, name_string, name_string_length, &v_colorant_name); if (code < 0) return code; code = cos_dict_put(colorants, v_colorant_name.contents.chars.data, v_colorant_name.contents.chars.size, &v_separation); cos_value_free((const cos_value_t *)&v_colorant_name, pdev->pdf_memory, "pdf_color_space(Subtype)"); if (code < 0) return code; } } if (pres_attributes != NULL) { code = pdf_substitute_resource(pdev, &pres_attributes, resourceOther, NULL, true); if (code < 0) return code; pres_attributes->where_used |= pdev->used_mask; va = &v_attributes; COS_OBJECT_VALUE(va, pres_attributes->object); } code = pdf_separation_color_space(pdev, pgs, pca, "/DeviceN", &v, pcs->base_space, pfn, &pdf_color_space_names, va); if (v.value_type == COS_VALUE_SCALAR) cos_value_free((const cos_value_t *)&v, pdev->pdf_memory, "pdf_color_space(Devicen)"); if (va != NULL && va->value_type == COS_VALUE_SCALAR) cos_value_free((const cos_value_t *)&va, pdev->pdf_memory, "pdf_color_space(Devicen)"); if (code < 0) return code; } break; case gs_color_space_index_Separation: if (!pdev->PreserveSeparation) return_error(gs_error_rangecheck); pfn = gs_cspace_get_sepr_function(pcs); /****** CURRENTLY WE ONLY HANDLE Functions ******/ if (pfn == 0) return_error(gs_error_rangecheck); { code = pdf_string_to_cos_name(pdev, (const byte *)pcs->params.separation.sep_name, strlen(pcs->params.separation.sep_name), &v); if (code < 0) return code; code = pdf_separation_color_space(pdev, pgs, pca, "/Separation", &v, pcs->base_space, pfn, &pdf_color_space_names, NULL); if (v.value_type == COS_VALUE_SCALAR) cos_value_free((const cos_value_t *)&v, pdev->pdf_memory, "pdf_color_space(Separation name)"); if (code < 0) return code; } break; case gs_color_space_index_Pattern: if ((code = pdf_color_space_named(pdev, pgs, pvalue, ppranges, pcs->base_space, &pdf_color_space_names, false, NULL, 0, false)) < 0 || (code = cos_array_add(pca, cos_c_string_value(&v, "/Pattern"))) < 0 || (code = cos_array_add(pca, pvalue)) < 0 ) return code; break; default: return_error(gs_error_rangecheck); } /* * Register the color space as a resource, since it must be referenced * by name rather than directly. */ { pdf_color_space_t *ppcs; if (code < 0 || (code = pdf_alloc_resource(pdev, resourceColorSpace, pcs->id, &pres, -1)) < 0 ) { COS_FREE(pca, "pdf_color_space"); return code; } pdf_reserve_object_id(pdev, pres, 0); if (res_name != NULL) { int l = min(name_length, sizeof(pres->rname) - 1); memcpy(pres->rname, res_name, l); pres->rname[l] = 0; } ppcs = (pdf_color_space_t *)pres; if (serialized == serialized0) { serialized = gs_alloc_bytes(pdev->pdf_memory, serialized_size, "pdf_color_space"); if (serialized == NULL) return_error(gs_error_VMerror); memcpy(serialized, serialized0, serialized_size); } ppcs->serialized = serialized; ppcs->serialized_size = serialized_size; if (ranges) { int num_comp = gs_color_space_num_components(pcs); gs_range_t *copy_ranges = (gs_range_t *) gs_alloc_byte_array(pdev->pdf_memory, num_comp, sizeof(gs_range_t), "pdf_color_space"); if (copy_ranges == 0) { COS_FREE(pca, "pdf_color_space"); return_error(gs_error_VMerror); } memcpy(copy_ranges, ranges, num_comp * sizeof(gs_range_t)); ppcs->ranges = copy_ranges; if (ppranges) *ppranges = copy_ranges; } else ppcs->ranges = 0; pca->id = pres->object->id; COS_FREE(pres->object, "pdf_color_space"); pres->object = (cos_object_t *)pca; cos_write_object(COS_OBJECT(pca), pdev, resourceColorSpace); } ret: if (by_name) { /* Return a resource name rather than an object reference. */ discard(COS_RESOURCE_VALUE(pvalue, pca)); } else discard(COS_OBJECT_VALUE(pvalue, pca)); if (pres != NULL) { pres->where_used |= pdev->used_mask; code = pdf_add_resource(pdev, pdev->substream_Resources, "/ColorSpace", pres); if (code < 0) return code; } return 0; } int free_color_space(gx_device_pdf *pdev, pdf_resource_t *pres) { pdf_color_space_t *ppcs = (pdf_color_space_t *)pres; if (ppcs->serialized) gs_free_object(pdev->pdf_memory, ppcs->serialized, "free serialized colour space"); if (pres->object) { cos_release(pres->object, "release ColorSpace object"); gs_free_object(pdev->pdf_memory, pres->object, "free ColorSpace object"); pres->object = 0; } return 0; } /* ---------------- Miscellaneous ---------------- */ /* Create colored and uncolored Pattern color spaces. */ static int pdf_pattern_space(gx_device_pdf *pdev, cos_value_t *pvalue, pdf_resource_t **ppres, const char *cs_name) { int code; if (!*ppres) { int code = pdf_begin_resource_body(pdev, resourceColorSpace, gs_no_id, ppres); if (code < 0) return code; pprints1(pdev->strm, "%s\n", cs_name); pdf_end_resource(pdev, resourceColorSpace); (*ppres)->object->written = true; /* don't write at end */ ((pdf_color_space_t *)*ppres)->ranges = 0; ((pdf_color_space_t *)*ppres)->serialized = 0; } code = pdf_add_resource(pdev, pdev->substream_Resources, "/ColorSpace", *ppres); if (code < 0) return code; cos_resource_value(pvalue, (*ppres)->object); return 0; } int pdf_cs_Pattern_colored(gx_device_pdf *pdev, cos_value_t *pvalue) { return pdf_pattern_space(pdev, pvalue, &pdev->cs_Patterns[0], "[/Pattern]"); } int pdf_cs_Pattern_uncolored(gx_device_pdf *pdev, cos_value_t *pvalue) { /* Only for process colors. */ int ncomp = pdev->color_info.num_components; static const char *const pcs_names[5] = { 0, "[/Pattern /DeviceGray]", 0, "[/Pattern /DeviceRGB]", "[/Pattern /DeviceCMYK]" }; return pdf_pattern_space(pdev, pvalue, &pdev->cs_Patterns[ncomp], pcs_names[ncomp]); } int pdf_cs_Pattern_uncolored_hl(gx_device_pdf *pdev, const gs_color_space *pcs, cos_value_t *pvalue, const gs_gstate * pgs) { /* Only for high level colors. */ return pdf_color_space_named(pdev, pgs, pvalue, NULL, pcs, &pdf_color_space_names, true, NULL, 0, false); } /* Set the ProcSets bits corresponding to an image color space. */ void pdf_color_space_procsets(gx_device_pdf *pdev, const gs_color_space *pcs) { const gs_color_space *pbcs = pcs; csw: switch (gs_color_space_get_index(pbcs)) { case gs_color_space_index_DeviceGray: case gs_color_space_index_CIEA: /* We only handle CIEBasedA spaces that map to CalGray. */ pdev->procsets |= ImageB; break; case gs_color_space_index_Indexed: pdev->procsets |= ImageI; pbcs = pcs->base_space; goto csw; default: pdev->procsets |= ImageC; break; } }