/* Abstract Object Interface (many thanks to Jim Fulton) */ #include "Python.h" #include "pycore_abstract.h" // _PyIndex_Check() #include "pycore_ceval.h" // _Py_EnterRecursiveCall() #include "pycore_object.h" // _Py_CheckSlotResult() #include "pycore_pyerrors.h" // _PyErr_Occurred() #include "pycore_pystate.h" // _PyThreadState_GET() #include "pycore_unionobject.h" // _Py_UnionType && _Py_Union() #include #include // offsetof() #include "longintrepr.h" /* Shorthands to return certain errors */ static PyObject * type_error(const char *msg, PyObject *obj) { PyErr_Format(PyExc_TypeError, msg, Py_TYPE(obj)->tp_name); return NULL; } static PyObject * null_error(void) { PyThreadState *tstate = _PyThreadState_GET(); if (!_PyErr_Occurred(tstate)) { _PyErr_SetString(tstate, PyExc_SystemError, "null argument to internal routine"); } return NULL; } /* Operations on any object */ PyObject * PyObject_Type(PyObject *o) { PyObject *v; if (o == NULL) { return null_error(); } v = (PyObject *)Py_TYPE(o); Py_INCREF(v); return v; } Py_ssize_t PyObject_Size(PyObject *o) { if (o == NULL) { null_error(); return -1; } PySequenceMethods *m = Py_TYPE(o)->tp_as_sequence; if (m && m->sq_length) { Py_ssize_t len = m->sq_length(o); assert(_Py_CheckSlotResult(o, "__len__", len >= 0)); return len; } return PyMapping_Size(o); } #undef PyObject_Length Py_ssize_t PyObject_Length(PyObject *o) { return PyObject_Size(o); } #define PyObject_Length PyObject_Size int _PyObject_HasLen(PyObject *o) { return (Py_TYPE(o)->tp_as_sequence && Py_TYPE(o)->tp_as_sequence->sq_length) || (Py_TYPE(o)->tp_as_mapping && Py_TYPE(o)->tp_as_mapping->mp_length); } /* The length hint function returns a non-negative value from o.__len__() or o.__length_hint__(). If those methods aren't found the defaultvalue is returned. If one of the calls fails with an exception other than TypeError this function returns -1. */ Py_ssize_t PyObject_LengthHint(PyObject *o, Py_ssize_t defaultvalue) { PyObject *hint, *result; Py_ssize_t res; _Py_IDENTIFIER(__length_hint__); if (_PyObject_HasLen(o)) { res = PyObject_Length(o); if (res < 0) { PyThreadState *tstate = _PyThreadState_GET(); assert(_PyErr_Occurred(tstate)); if (!_PyErr_ExceptionMatches(tstate, PyExc_TypeError)) { return -1; } _PyErr_Clear(tstate); } else { return res; } } hint = _PyObject_LookupSpecial(o, &PyId___length_hint__); if (hint == NULL) { if (PyErr_Occurred()) { return -1; } return defaultvalue; } result = _PyObject_CallNoArg(hint); Py_DECREF(hint); if (result == NULL) { PyThreadState *tstate = _PyThreadState_GET(); if (_PyErr_ExceptionMatches(tstate, PyExc_TypeError)) { _PyErr_Clear(tstate); return defaultvalue; } return -1; } else if (result == Py_NotImplemented) { Py_DECREF(result); return defaultvalue; } if (!PyLong_Check(result)) { PyErr_Format(PyExc_TypeError, "__length_hint__ must be an integer, not %.100s", Py_TYPE(result)->tp_name); Py_DECREF(result); return -1; } res = PyLong_AsSsize_t(result); Py_DECREF(result); if (res < 0 && PyErr_Occurred()) { return -1; } if (res < 0) { PyErr_Format(PyExc_ValueError, "__length_hint__() should return >= 0"); return -1; } return res; } PyObject * PyObject_GetItem(PyObject *o, PyObject *key) { if (o == NULL || key == NULL) { return null_error(); } PyMappingMethods *m = Py_TYPE(o)->tp_as_mapping; if (m && m->mp_subscript) { PyObject *item = m->mp_subscript(o, key); assert(_Py_CheckSlotResult(o, "__getitem__", item != NULL)); return item; } PySequenceMethods *ms = Py_TYPE(o)->tp_as_sequence; if (ms && ms->sq_item) { if (_PyIndex_Check(key)) { Py_ssize_t key_value; key_value = PyNumber_AsSsize_t(key, PyExc_IndexError); if (key_value == -1 && PyErr_Occurred()) return NULL; return PySequence_GetItem(o, key_value); } else { return type_error("sequence index must " "be integer, not '%.200s'", key); } } if (PyType_Check(o)) { PyObject *meth, *result; _Py_IDENTIFIER(__class_getitem__); // Special case type[int], but disallow other types so str[int] fails if ((PyTypeObject*)o == &PyType_Type) { return Py_GenericAlias(o, key); } if (_PyObject_LookupAttrId(o, &PyId___class_getitem__, &meth) < 0) { return NULL; } if (meth) { result = PyObject_CallOneArg(meth, key); Py_DECREF(meth); return result; } } return type_error("'%.200s' object is not subscriptable", o); } int PyObject_SetItem(PyObject *o, PyObject *key, PyObject *value) { if (o == NULL || key == NULL || value == NULL) { null_error(); return -1; } PyMappingMethods *m = Py_TYPE(o)->tp_as_mapping; if (m && m->mp_ass_subscript) { int res = m->mp_ass_subscript(o, key, value); assert(_Py_CheckSlotResult(o, "__setitem__", res >= 0)); return res; } if (Py_TYPE(o)->tp_as_sequence) { if (_PyIndex_Check(key)) { Py_ssize_t key_value; key_value = PyNumber_AsSsize_t(key, PyExc_IndexError); if (key_value == -1 && PyErr_Occurred()) return -1; return PySequence_SetItem(o, key_value, value); } else if (Py_TYPE(o)->tp_as_sequence->sq_ass_item) { type_error("sequence index must be " "integer, not '%.200s'", key); return -1; } } type_error("'%.200s' object does not support item assignment", o); return -1; } int PyObject_DelItem(PyObject *o, PyObject *key) { if (o == NULL || key == NULL) { null_error(); return -1; } PyMappingMethods *m = Py_TYPE(o)->tp_as_mapping; if (m && m->mp_ass_subscript) { int res = m->mp_ass_subscript(o, key, (PyObject*)NULL); assert(_Py_CheckSlotResult(o, "__delitem__", res >= 0)); return res; } if (Py_TYPE(o)->tp_as_sequence) { if (_PyIndex_Check(key)) { Py_ssize_t key_value; key_value = PyNumber_AsSsize_t(key, PyExc_IndexError); if (key_value == -1 && PyErr_Occurred()) return -1; return PySequence_DelItem(o, key_value); } else if (Py_TYPE(o)->tp_as_sequence->sq_ass_item) { type_error("sequence index must be " "integer, not '%.200s'", key); return -1; } } type_error("'%.200s' object does not support item deletion", o); return -1; } int PyObject_DelItemString(PyObject *o, const char *key) { PyObject *okey; int ret; if (o == NULL || key == NULL) { null_error(); return -1; } okey = PyUnicode_FromString(key); if (okey == NULL) return -1; ret = PyObject_DelItem(o, okey); Py_DECREF(okey); return ret; } /* Return 1 if the getbuffer function is available, otherwise return 0. */ int PyObject_CheckBuffer(PyObject *obj) { PyBufferProcs *tp_as_buffer = Py_TYPE(obj)->tp_as_buffer; return (tp_as_buffer != NULL && tp_as_buffer->bf_getbuffer != NULL); } /* Buffer C-API for Python 3.0 */ int PyObject_GetBuffer(PyObject *obj, Py_buffer *view, int flags) { PyBufferProcs *pb = Py_TYPE(obj)->tp_as_buffer; if (pb == NULL || pb->bf_getbuffer == NULL) { PyErr_Format(PyExc_TypeError, "a bytes-like object is required, not '%.100s'", Py_TYPE(obj)->tp_name); return -1; } int res = (*pb->bf_getbuffer)(obj, view, flags); assert(_Py_CheckSlotResult(obj, "getbuffer", res >= 0)); return res; } static int _IsFortranContiguous(const Py_buffer *view) { Py_ssize_t sd, dim; int i; /* 1) len = product(shape) * itemsize 2) itemsize > 0 3) len = 0 <==> exists i: shape[i] = 0 */ if (view->len == 0) return 1; if (view->strides == NULL) { /* C-contiguous by definition */ /* Trivially F-contiguous */ if (view->ndim <= 1) return 1; /* ndim > 1 implies shape != NULL */ assert(view->shape != NULL); /* Effectively 1-d */ sd = 0; for (i=0; indim; i++) { if (view->shape[i] > 1) sd += 1; } return sd <= 1; } /* strides != NULL implies both of these */ assert(view->ndim > 0); assert(view->shape != NULL); sd = view->itemsize; for (i=0; indim; i++) { dim = view->shape[i]; if (dim > 1 && view->strides[i] != sd) { return 0; } sd *= dim; } return 1; } static int _IsCContiguous(const Py_buffer *view) { Py_ssize_t sd, dim; int i; /* 1) len = product(shape) * itemsize 2) itemsize > 0 3) len = 0 <==> exists i: shape[i] = 0 */ if (view->len == 0) return 1; if (view->strides == NULL) return 1; /* C-contiguous by definition */ /* strides != NULL implies both of these */ assert(view->ndim > 0); assert(view->shape != NULL); sd = view->itemsize; for (i=view->ndim-1; i>=0; i--) { dim = view->shape[i]; if (dim > 1 && view->strides[i] != sd) { return 0; } sd *= dim; } return 1; } int PyBuffer_IsContiguous(const Py_buffer *view, char order) { if (view->suboffsets != NULL) return 0; if (order == 'C') return _IsCContiguous(view); else if (order == 'F') return _IsFortranContiguous(view); else if (order == 'A') return (_IsCContiguous(view) || _IsFortranContiguous(view)); return 0; } void* PyBuffer_GetPointer(Py_buffer *view, Py_ssize_t *indices) { char* pointer; int i; pointer = (char *)view->buf; for (i = 0; i < view->ndim; i++) { pointer += view->strides[i]*indices[i]; if ((view->suboffsets != NULL) && (view->suboffsets[i] >= 0)) { pointer = *((char**)pointer) + view->suboffsets[i]; } } return (void*)pointer; } void _Py_add_one_to_index_F(int nd, Py_ssize_t *index, const Py_ssize_t *shape) { int k; for (k=0; k=0; k--) { if (index[k] < shape[k]-1) { index[k]++; break; } else { index[k] = 0; } } } Py_ssize_t PyBuffer_SizeFromFormat(const char *format) { PyObject *structmodule = NULL; PyObject *calcsize = NULL; PyObject *res = NULL; PyObject *fmt = NULL; Py_ssize_t itemsize = -1; structmodule = PyImport_ImportModule("struct"); if (structmodule == NULL) { return itemsize; } calcsize = PyObject_GetAttrString(structmodule, "calcsize"); if (calcsize == NULL) { goto done; } fmt = PyUnicode_FromString(format); if (fmt == NULL) { goto done; } res = PyObject_CallFunctionObjArgs(calcsize, fmt, NULL); if (res == NULL) { goto done; } itemsize = PyLong_AsSsize_t(res); if (itemsize < 0) { goto done; } done: Py_DECREF(structmodule); Py_XDECREF(calcsize); Py_XDECREF(fmt); Py_XDECREF(res); return itemsize; } int PyBuffer_FromContiguous(Py_buffer *view, void *buf, Py_ssize_t len, char fort) { int k; void (*addone)(int, Py_ssize_t *, const Py_ssize_t *); Py_ssize_t *indices, elements; char *src, *ptr; if (len > view->len) { len = view->len; } if (PyBuffer_IsContiguous(view, fort)) { /* simplest copy is all that is needed */ memcpy(view->buf, buf, len); return 0; } /* Otherwise a more elaborate scheme is needed */ /* view->ndim <= 64 */ indices = (Py_ssize_t *)PyMem_Malloc(sizeof(Py_ssize_t)*(view->ndim)); if (indices == NULL) { PyErr_NoMemory(); return -1; } for (k=0; kndim;k++) { indices[k] = 0; } if (fort == 'F') { addone = _Py_add_one_to_index_F; } else { addone = _Py_add_one_to_index_C; } src = buf; /* XXX : This is not going to be the fastest code in the world several optimizations are possible. */ elements = len / view->itemsize; while (elements--) { ptr = PyBuffer_GetPointer(view, indices); memcpy(ptr, src, view->itemsize); src += view->itemsize; addone(view->ndim, indices, view->shape); } PyMem_Free(indices); return 0; } int PyObject_CopyData(PyObject *dest, PyObject *src) { Py_buffer view_dest, view_src; int k; Py_ssize_t *indices, elements; char *dptr, *sptr; if (!PyObject_CheckBuffer(dest) || !PyObject_CheckBuffer(src)) { PyErr_SetString(PyExc_TypeError, "both destination and source must be "\ "bytes-like objects"); return -1; } if (PyObject_GetBuffer(dest, &view_dest, PyBUF_FULL) != 0) return -1; if (PyObject_GetBuffer(src, &view_src, PyBUF_FULL_RO) != 0) { PyBuffer_Release(&view_dest); return -1; } if (view_dest.len < view_src.len) { PyErr_SetString(PyExc_BufferError, "destination is too small to receive data from source"); PyBuffer_Release(&view_dest); PyBuffer_Release(&view_src); return -1; } if ((PyBuffer_IsContiguous(&view_dest, 'C') && PyBuffer_IsContiguous(&view_src, 'C')) || (PyBuffer_IsContiguous(&view_dest, 'F') && PyBuffer_IsContiguous(&view_src, 'F'))) { /* simplest copy is all that is needed */ memcpy(view_dest.buf, view_src.buf, view_src.len); PyBuffer_Release(&view_dest); PyBuffer_Release(&view_src); return 0; } /* Otherwise a more elaborate copy scheme is needed */ /* XXX(nnorwitz): need to check for overflow! */ indices = (Py_ssize_t *)PyMem_Malloc(sizeof(Py_ssize_t)*view_src.ndim); if (indices == NULL) { PyErr_NoMemory(); PyBuffer_Release(&view_dest); PyBuffer_Release(&view_src); return -1; } for (k=0; k=0; k--) { strides[k] = sd; sd *= shape[k]; } } return; } int PyBuffer_FillInfo(Py_buffer *view, PyObject *obj, void *buf, Py_ssize_t len, int readonly, int flags) { if (view == NULL) { PyErr_SetString(PyExc_BufferError, "PyBuffer_FillInfo: view==NULL argument is obsolete"); return -1; } if (((flags & PyBUF_WRITABLE) == PyBUF_WRITABLE) && (readonly == 1)) { PyErr_SetString(PyExc_BufferError, "Object is not writable."); return -1; } view->obj = obj; if (obj) Py_INCREF(obj); view->buf = buf; view->len = len; view->readonly = readonly; view->itemsize = 1; view->format = NULL; if ((flags & PyBUF_FORMAT) == PyBUF_FORMAT) view->format = "B"; view->ndim = 1; view->shape = NULL; if ((flags & PyBUF_ND) == PyBUF_ND) view->shape = &(view->len); view->strides = NULL; if ((flags & PyBUF_STRIDES) == PyBUF_STRIDES) view->strides = &(view->itemsize); view->suboffsets = NULL; view->internal = NULL; return 0; } void PyBuffer_Release(Py_buffer *view) { PyObject *obj = view->obj; PyBufferProcs *pb; if (obj == NULL) return; pb = Py_TYPE(obj)->tp_as_buffer; if (pb && pb->bf_releasebuffer) { pb->bf_releasebuffer(obj, view); } view->obj = NULL; Py_DECREF(obj); } PyObject * PyObject_Format(PyObject *obj, PyObject *format_spec) { PyObject *meth; PyObject *empty = NULL; PyObject *result = NULL; _Py_IDENTIFIER(__format__); if (format_spec != NULL && !PyUnicode_Check(format_spec)) { PyErr_Format(PyExc_SystemError, "Format specifier must be a string, not %.200s", Py_TYPE(format_spec)->tp_name); return NULL; } /* Fast path for common types. */ if (format_spec == NULL || PyUnicode_GET_LENGTH(format_spec) == 0) { if (PyUnicode_CheckExact(obj)) { Py_INCREF(obj); return obj; } if (PyLong_CheckExact(obj)) { return PyObject_Str(obj); } } /* If no format_spec is provided, use an empty string */ if (format_spec == NULL) { empty = PyUnicode_New(0, 0); format_spec = empty; } /* Find the (unbound!) __format__ method */ meth = _PyObject_LookupSpecial(obj, &PyId___format__); if (meth == NULL) { PyThreadState *tstate = _PyThreadState_GET(); if (!_PyErr_Occurred(tstate)) { _PyErr_Format(tstate, PyExc_TypeError, "Type %.100s doesn't define __format__", Py_TYPE(obj)->tp_name); } goto done; } /* And call it. */ result = PyObject_CallOneArg(meth, format_spec); Py_DECREF(meth); if (result && !PyUnicode_Check(result)) { PyErr_Format(PyExc_TypeError, "__format__ must return a str, not %.200s", Py_TYPE(result)->tp_name); Py_DECREF(result); result = NULL; goto done; } done: Py_XDECREF(empty); return result; } /* Operations on numbers */ int PyNumber_Check(PyObject *o) { if (o == NULL) return 0; PyNumberMethods *nb = Py_TYPE(o)->tp_as_number; return nb && (nb->nb_index || nb->nb_int || nb->nb_float || PyComplex_Check(o)); } /* Binary operators */ #define NB_SLOT(x) offsetof(PyNumberMethods, x) #define NB_BINOP(nb_methods, slot) \ (*(binaryfunc*)(& ((char*)nb_methods)[slot])) #define NB_TERNOP(nb_methods, slot) \ (*(ternaryfunc*)(& ((char*)nb_methods)[slot])) /* Calling scheme used for binary operations: Order operations are tried until either a valid result or error: w.op(v,w)[*], v.op(v,w), w.op(v,w) [*] only when Py_TYPE(v) != Py_TYPE(w) && Py_TYPE(w) is a subclass of Py_TYPE(v) */ static PyObject * binary_op1(PyObject *v, PyObject *w, const int op_slot #ifndef NDEBUG , const char *op_name #endif ) { binaryfunc slotv; if (Py_TYPE(v)->tp_as_number != NULL) { slotv = NB_BINOP(Py_TYPE(v)->tp_as_number, op_slot); } else { slotv = NULL; } binaryfunc slotw; if (!Py_IS_TYPE(w, Py_TYPE(v)) && Py_TYPE(w)->tp_as_number != NULL) { slotw = NB_BINOP(Py_TYPE(w)->tp_as_number, op_slot); if (slotw == slotv) { slotw = NULL; } } else { slotw = NULL; } if (slotv) { PyObject *x; if (slotw && PyType_IsSubtype(Py_TYPE(w), Py_TYPE(v))) { x = slotw(v, w); if (x != Py_NotImplemented) return x; Py_DECREF(x); /* can't do it */ slotw = NULL; } x = slotv(v, w); assert(_Py_CheckSlotResult(v, op_name, x != NULL)); if (x != Py_NotImplemented) { return x; } Py_DECREF(x); /* can't do it */ } if (slotw) { PyObject *x = slotw(v, w); assert(_Py_CheckSlotResult(w, op_name, x != NULL)); if (x != Py_NotImplemented) { return x; } Py_DECREF(x); /* can't do it */ } Py_RETURN_NOTIMPLEMENTED; } #ifdef NDEBUG # define BINARY_OP1(v, w, op_slot, op_name) binary_op1(v, w, op_slot) #else # define BINARY_OP1(v, w, op_slot, op_name) binary_op1(v, w, op_slot, op_name) #endif static PyObject * binop_type_error(PyObject *v, PyObject *w, const char *op_name) { PyErr_Format(PyExc_TypeError, "unsupported operand type(s) for %.100s: " "'%.100s' and '%.100s'", op_name, Py_TYPE(v)->tp_name, Py_TYPE(w)->tp_name); return NULL; } static PyObject * binary_op(PyObject *v, PyObject *w, const int op_slot, const char *op_name) { PyObject *result = BINARY_OP1(v, w, op_slot, op_name); if (result == Py_NotImplemented) { Py_DECREF(result); if (op_slot == NB_SLOT(nb_rshift) && PyCFunction_CheckExact(v) && strcmp(((PyCFunctionObject *)v)->m_ml->ml_name, "print") == 0) { PyErr_Format(PyExc_TypeError, "unsupported operand type(s) for %.100s: " "'%.100s' and '%.100s'. Did you mean \"print(, " "file=)\"?", op_name, Py_TYPE(v)->tp_name, Py_TYPE(w)->tp_name); return NULL; } return binop_type_error(v, w, op_name); } return result; } /* Calling scheme used for ternary operations: Order operations are tried until either a valid result or error: v.op(v,w,z), w.op(v,w,z), z.op(v,w,z) */ static PyObject * ternary_op(PyObject *v, PyObject *w, PyObject *z, const int op_slot #ifndef NDEBUG , const char *op_name #endif ) { PyNumberMethods *mv = Py_TYPE(v)->tp_as_number; PyNumberMethods *mw = Py_TYPE(w)->tp_as_number; ternaryfunc slotv; if (mv != NULL) { slotv = NB_TERNOP(mv, op_slot); } else { slotv = NULL; } ternaryfunc slotw; if (!Py_IS_TYPE(w, Py_TYPE(v)) && mw != NULL) { slotw = NB_TERNOP(mw, op_slot); if (slotw == slotv) { slotw = NULL; } } else { slotw = NULL; } if (slotv) { PyObject *x; if (slotw && PyType_IsSubtype(Py_TYPE(w), Py_TYPE(v))) { x = slotw(v, w, z); if (x != Py_NotImplemented) { return x; } Py_DECREF(x); /* can't do it */ slotw = NULL; } x = slotv(v, w, z); assert(_Py_CheckSlotResult(v, op_name, x != NULL)); if (x != Py_NotImplemented) { return x; } Py_DECREF(x); /* can't do it */ } if (slotw) { PyObject *x = slotw(v, w, z); assert(_Py_CheckSlotResult(w, op_name, x != NULL)); if (x != Py_NotImplemented) { return x; } Py_DECREF(x); /* can't do it */ } PyNumberMethods *mz = Py_TYPE(z)->tp_as_number; if (mz != NULL) { ternaryfunc slotz = NB_TERNOP(mz, op_slot); if (slotz == slotv || slotz == slotw) { slotz = NULL; } if (slotz) { PyObject *x = slotz(v, w, z); assert(_Py_CheckSlotResult(z, op_name, x != NULL)); if (x != Py_NotImplemented) { return x; } Py_DECREF(x); /* can't do it */ } } if (z == Py_None) { PyErr_Format( PyExc_TypeError, "unsupported operand type(s) for ** or pow(): " "'%.100s' and '%.100s'", Py_TYPE(v)->tp_name, Py_TYPE(w)->tp_name); } else { PyErr_Format( PyExc_TypeError, "unsupported operand type(s) for pow(): " "'%.100s', '%.100s', '%.100s'", Py_TYPE(v)->tp_name, Py_TYPE(w)->tp_name, Py_TYPE(z)->tp_name); } return NULL; } #ifdef NDEBUG # define TERNARY_OP(v, w, z, op_slot, op_name) ternary_op(v, w, z, op_slot) #else # define TERNARY_OP(v, w, z, op_slot, op_name) ternary_op(v, w, z, op_slot, op_name) #endif #define BINARY_FUNC(func, op, op_name) \ PyObject * \ func(PyObject *v, PyObject *w) { \ return binary_op(v, w, NB_SLOT(op), op_name); \ } BINARY_FUNC(PyNumber_Or, nb_or, "|") BINARY_FUNC(PyNumber_Xor, nb_xor, "^") BINARY_FUNC(PyNumber_And, nb_and, "&") BINARY_FUNC(PyNumber_Lshift, nb_lshift, "<<") BINARY_FUNC(PyNumber_Rshift, nb_rshift, ">>") BINARY_FUNC(PyNumber_Subtract, nb_subtract, "-") BINARY_FUNC(PyNumber_Divmod, nb_divmod, "divmod()") PyObject * PyNumber_Add(PyObject *v, PyObject *w) { PyObject *result = BINARY_OP1(v, w, NB_SLOT(nb_add), "+"); if (result != Py_NotImplemented) { return result; } Py_DECREF(result); PySequenceMethods *m = Py_TYPE(v)->tp_as_sequence; if (m && m->sq_concat) { result = (*m->sq_concat)(v, w); assert(_Py_CheckSlotResult(v, "+", result != NULL)); return result; } return binop_type_error(v, w, "+"); } static PyObject * sequence_repeat(ssizeargfunc repeatfunc, PyObject *seq, PyObject *n) { Py_ssize_t count; if (_PyIndex_Check(n)) { count = PyNumber_AsSsize_t(n, PyExc_OverflowError); if (count == -1 && PyErr_Occurred()) { return NULL; } } else { return type_error("can't multiply sequence by " "non-int of type '%.200s'", n); } PyObject *res = (*repeatfunc)(seq, count); assert(_Py_CheckSlotResult(seq, "*", res != NULL)); return res; } PyObject * PyNumber_Multiply(PyObject *v, PyObject *w) { PyObject *result = BINARY_OP1(v, w, NB_SLOT(nb_multiply), "*"); if (result == Py_NotImplemented) { PySequenceMethods *mv = Py_TYPE(v)->tp_as_sequence; PySequenceMethods *mw = Py_TYPE(w)->tp_as_sequence; Py_DECREF(result); if (mv && mv->sq_repeat) { return sequence_repeat(mv->sq_repeat, v, w); } else if (mw && mw->sq_repeat) { return sequence_repeat(mw->sq_repeat, w, v); } result = binop_type_error(v, w, "*"); } return result; } PyObject * PyNumber_MatrixMultiply(PyObject *v, PyObject *w) { return binary_op(v, w, NB_SLOT(nb_matrix_multiply), "@"); } PyObject * PyNumber_FloorDivide(PyObject *v, PyObject *w) { return binary_op(v, w, NB_SLOT(nb_floor_divide), "//"); } PyObject * PyNumber_TrueDivide(PyObject *v, PyObject *w) { return binary_op(v, w, NB_SLOT(nb_true_divide), "/"); } PyObject * PyNumber_Remainder(PyObject *v, PyObject *w) { return binary_op(v, w, NB_SLOT(nb_remainder), "%"); } PyObject * PyNumber_Power(PyObject *v, PyObject *w, PyObject *z) { return TERNARY_OP(v, w, z, NB_SLOT(nb_power), "** or pow()"); } /* Binary in-place operators */ /* The in-place operators are defined to fall back to the 'normal', non in-place operations, if the in-place methods are not in place. - If the left hand object has the appropriate struct members, and they are filled, call the appropriate function and return the result. No coercion is done on the arguments; the left-hand object is the one the operation is performed on, and it's up to the function to deal with the right-hand object. - Otherwise, in-place modification is not supported. Handle it exactly as a non in-place operation of the same kind. */ static PyObject * binary_iop1(PyObject *v, PyObject *w, const int iop_slot, const int op_slot #ifndef NDEBUG , const char *op_name #endif ) { PyNumberMethods *mv = Py_TYPE(v)->tp_as_number; if (mv != NULL) { binaryfunc slot = NB_BINOP(mv, iop_slot); if (slot) { PyObject *x = (slot)(v, w); assert(_Py_CheckSlotResult(v, op_name, x != NULL)); if (x != Py_NotImplemented) { return x; } Py_DECREF(x); } } #ifdef NDEBUG return binary_op1(v, w, op_slot); #else return binary_op1(v, w, op_slot, op_name); #endif } #ifdef NDEBUG # define BINARY_IOP1(v, w, iop_slot, op_slot, op_name) binary_iop1(v, w, iop_slot, op_slot) #else # define BINARY_IOP1(v, w, iop_slot, op_slot, op_name) binary_iop1(v, w, iop_slot, op_slot, op_name) #endif static PyObject * binary_iop(PyObject *v, PyObject *w, const int iop_slot, const int op_slot, const char *op_name) { PyObject *result = BINARY_IOP1(v, w, iop_slot, op_slot, op_name); if (result == Py_NotImplemented) { Py_DECREF(result); return binop_type_error(v, w, op_name); } return result; } #define INPLACE_BINOP(func, iop, op, op_name) \ PyObject * \ func(PyObject *v, PyObject *w) { \ return binary_iop(v, w, NB_SLOT(iop), NB_SLOT(op), op_name); \ } INPLACE_BINOP(PyNumber_InPlaceOr, nb_inplace_or, nb_or, "|=") INPLACE_BINOP(PyNumber_InPlaceXor, nb_inplace_xor, nb_xor, "^=") INPLACE_BINOP(PyNumber_InPlaceAnd, nb_inplace_and, nb_and, "&=") INPLACE_BINOP(PyNumber_InPlaceLshift, nb_inplace_lshift, nb_lshift, "<<=") INPLACE_BINOP(PyNumber_InPlaceRshift, nb_inplace_rshift, nb_rshift, ">>=") INPLACE_BINOP(PyNumber_InPlaceSubtract, nb_inplace_subtract, nb_subtract, "-=") INPLACE_BINOP(PyNumber_InMatrixMultiply, nb_inplace_matrix_multiply, nb_matrix_multiply, "@=") PyObject * PyNumber_InPlaceFloorDivide(PyObject *v, PyObject *w) { return binary_iop(v, w, NB_SLOT(nb_inplace_floor_divide), NB_SLOT(nb_floor_divide), "//="); } PyObject * PyNumber_InPlaceTrueDivide(PyObject *v, PyObject *w) { return binary_iop(v, w, NB_SLOT(nb_inplace_true_divide), NB_SLOT(nb_true_divide), "/="); } PyObject * PyNumber_InPlaceAdd(PyObject *v, PyObject *w) { PyObject *result = BINARY_IOP1(v, w, NB_SLOT(nb_inplace_add), NB_SLOT(nb_add), "+="); if (result == Py_NotImplemented) { PySequenceMethods *m = Py_TYPE(v)->tp_as_sequence; Py_DECREF(result); if (m != NULL) { binaryfunc func = m->sq_inplace_concat; if (func == NULL) func = m->sq_concat; if (func != NULL) { result = func(v, w); assert(_Py_CheckSlotResult(v, "+=", result != NULL)); return result; } } result = binop_type_error(v, w, "+="); } return result; } PyObject * PyNumber_InPlaceMultiply(PyObject *v, PyObject *w) { PyObject *result = BINARY_IOP1(v, w, NB_SLOT(nb_inplace_multiply), NB_SLOT(nb_multiply), "*="); if (result == Py_NotImplemented) { ssizeargfunc f = NULL; PySequenceMethods *mv = Py_TYPE(v)->tp_as_sequence; PySequenceMethods *mw = Py_TYPE(w)->tp_as_sequence; Py_DECREF(result); if (mv != NULL) { f = mv->sq_inplace_repeat; if (f == NULL) f = mv->sq_repeat; if (f != NULL) return sequence_repeat(f, v, w); } else if (mw != NULL) { /* Note that the right hand operand should not be * mutated in this case so sq_inplace_repeat is not * used. */ if (mw->sq_repeat) return sequence_repeat(mw->sq_repeat, w, v); } result = binop_type_error(v, w, "*="); } return result; } PyObject * PyNumber_InPlaceMatrixMultiply(PyObject *v, PyObject *w) { return binary_iop(v, w, NB_SLOT(nb_inplace_matrix_multiply), NB_SLOT(nb_matrix_multiply), "@="); } PyObject * PyNumber_InPlaceRemainder(PyObject *v, PyObject *w) { return binary_iop(v, w, NB_SLOT(nb_inplace_remainder), NB_SLOT(nb_remainder), "%="); } PyObject * PyNumber_InPlacePower(PyObject *v, PyObject *w, PyObject *z) { if (Py_TYPE(v)->tp_as_number && Py_TYPE(v)->tp_as_number->nb_inplace_power != NULL) { return TERNARY_OP(v, w, z, NB_SLOT(nb_inplace_power), "**="); } else { return TERNARY_OP(v, w, z, NB_SLOT(nb_power), "**="); } } /* Unary operators and functions */ PyObject * PyNumber_Negative(PyObject *o) { if (o == NULL) { return null_error(); } PyNumberMethods *m = Py_TYPE(o)->tp_as_number; if (m && m->nb_negative) { PyObject *res = (*m->nb_negative)(o); assert(_Py_CheckSlotResult(o, "__neg__", res != NULL)); return res; } return type_error("bad operand type for unary -: '%.200s'", o); } PyObject * PyNumber_Positive(PyObject *o) { if (o == NULL) { return null_error(); } PyNumberMethods *m = Py_TYPE(o)->tp_as_number; if (m && m->nb_positive) { PyObject *res = (*m->nb_positive)(o); assert(_Py_CheckSlotResult(o, "__pos__", res != NULL)); return res; } return type_error("bad operand type for unary +: '%.200s'", o); } PyObject * PyNumber_Invert(PyObject *o) { if (o == NULL) { return null_error(); } PyNumberMethods *m = Py_TYPE(o)->tp_as_number; if (m && m->nb_invert) { PyObject *res = (*m->nb_invert)(o); assert(_Py_CheckSlotResult(o, "__invert__", res != NULL)); return res; } return type_error("bad operand type for unary ~: '%.200s'", o); } PyObject * PyNumber_Absolute(PyObject *o) { if (o == NULL) { return null_error(); } PyNumberMethods *m = Py_TYPE(o)->tp_as_number; if (m && m->nb_absolute) { PyObject *res = m->nb_absolute(o); assert(_Py_CheckSlotResult(o, "__abs__", res != NULL)); return res; } return type_error("bad operand type for abs(): '%.200s'", o); } int PyIndex_Check(PyObject *obj) { return _PyIndex_Check(obj); } /* Return a Python int from the object item. Can return an instance of int subclass. Raise TypeError if the result is not an int or if the object cannot be interpreted as an index. */ PyObject * _PyNumber_Index(PyObject *item) { if (item == NULL) { return null_error(); } if (PyLong_Check(item)) { Py_INCREF(item); return item; } if (!_PyIndex_Check(item)) { PyErr_Format(PyExc_TypeError, "'%.200s' object cannot be interpreted " "as an integer", Py_TYPE(item)->tp_name); return NULL; } PyObject *result = Py_TYPE(item)->tp_as_number->nb_index(item); assert(_Py_CheckSlotResult(item, "__index__", result != NULL)); if (!result || PyLong_CheckExact(result)) { return result; } if (!PyLong_Check(result)) { PyErr_Format(PyExc_TypeError, "__index__ returned non-int (type %.200s)", Py_TYPE(result)->tp_name); Py_DECREF(result); return NULL; } /* Issue #17576: warn if 'result' not of exact type int. */ if (PyErr_WarnFormat(PyExc_DeprecationWarning, 1, "__index__ returned non-int (type %.200s). " "The ability to return an instance of a strict subclass of int " "is deprecated, and may be removed in a future version of Python.", Py_TYPE(result)->tp_name)) { Py_DECREF(result); return NULL; } return result; } /* Return an exact Python int from the object item. Raise TypeError if the result is not an int or if the object cannot be interpreted as an index. */ PyObject * PyNumber_Index(PyObject *item) { PyObject *result = _PyNumber_Index(item); if (result != NULL && !PyLong_CheckExact(result)) { Py_SETREF(result, _PyLong_Copy((PyLongObject *)result)); } return result; } /* Return an error on Overflow only if err is not NULL*/ Py_ssize_t PyNumber_AsSsize_t(PyObject *item, PyObject *err) { Py_ssize_t result; PyObject *runerr; PyObject *value = _PyNumber_Index(item); if (value == NULL) return -1; /* We're done if PyLong_AsSsize_t() returns without error. */ result = PyLong_AsSsize_t(value); if (result != -1) goto finish; PyThreadState *tstate = _PyThreadState_GET(); runerr = _PyErr_Occurred(tstate); if (!runerr) { goto finish; } /* Error handling code -- only manage OverflowError differently */ if (!PyErr_GivenExceptionMatches(runerr, PyExc_OverflowError)) { goto finish; } _PyErr_Clear(tstate); /* If no error-handling desired then the default clipping is sufficient. */ if (!err) { assert(PyLong_Check(value)); /* Whether or not it is less than or equal to zero is determined by the sign of ob_size */ if (_PyLong_Sign(value) < 0) result = PY_SSIZE_T_MIN; else result = PY_SSIZE_T_MAX; } else { /* Otherwise replace the error with caller's error object. */ _PyErr_Format(tstate, err, "cannot fit '%.200s' into an index-sized integer", Py_TYPE(item)->tp_name); } finish: Py_DECREF(value); return result; } PyObject * PyNumber_Long(PyObject *o) { PyObject *result; PyNumberMethods *m; PyObject *trunc_func; Py_buffer view; _Py_IDENTIFIER(__trunc__); if (o == NULL) { return null_error(); } if (PyLong_CheckExact(o)) { Py_INCREF(o); return o; } m = Py_TYPE(o)->tp_as_number; if (m && m->nb_int) { /* This should include subclasses of int */ /* Convert using the nb_int slot, which should return something of exact type int. */ result = m->nb_int(o); assert(_Py_CheckSlotResult(o, "__int__", result != NULL)); if (!result || PyLong_CheckExact(result)) { return result; } if (!PyLong_Check(result)) { PyErr_Format(PyExc_TypeError, "__int__ returned non-int (type %.200s)", Py_TYPE(result)->tp_name); Py_DECREF(result); return NULL; } /* Issue #17576: warn if 'result' not of exact type int. */ if (PyErr_WarnFormat(PyExc_DeprecationWarning, 1, "__int__ returned non-int (type %.200s). " "The ability to return an instance of a strict subclass of int " "is deprecated, and may be removed in a future version of Python.", Py_TYPE(result)->tp_name)) { Py_DECREF(result); return NULL; } Py_SETREF(result, _PyLong_Copy((PyLongObject *)result)); return result; } if (m && m->nb_index) { return PyNumber_Index(o); } trunc_func = _PyObject_LookupSpecial(o, &PyId___trunc__); if (trunc_func) { result = _PyObject_CallNoArg(trunc_func); Py_DECREF(trunc_func); if (result == NULL || PyLong_CheckExact(result)) { return result; } if (PyLong_Check(result)) { Py_SETREF(result, _PyLong_Copy((PyLongObject *)result)); return result; } /* __trunc__ is specified to return an Integral type, but int() needs to return an int. */ if (!PyIndex_Check(result)) { PyErr_Format( PyExc_TypeError, "__trunc__ returned non-Integral (type %.200s)", Py_TYPE(result)->tp_name); Py_DECREF(result); return NULL; } Py_SETREF(result, PyNumber_Index(result)); return result; } if (PyErr_Occurred()) return NULL; if (PyUnicode_Check(o)) /* The below check is done in PyLong_FromUnicodeObject(). */ return PyLong_FromUnicodeObject(o, 10); if (PyBytes_Check(o)) /* need to do extra error checking that PyLong_FromString() * doesn't do. In particular int('9\x005') must raise an * exception, not truncate at the null. */ return _PyLong_FromBytes(PyBytes_AS_STRING(o), PyBytes_GET_SIZE(o), 10); if (PyByteArray_Check(o)) return _PyLong_FromBytes(PyByteArray_AS_STRING(o), PyByteArray_GET_SIZE(o), 10); if (PyObject_GetBuffer(o, &view, PyBUF_SIMPLE) == 0) { PyObject *bytes; /* Copy to NUL-terminated buffer. */ bytes = PyBytes_FromStringAndSize((const char *)view.buf, view.len); if (bytes == NULL) { PyBuffer_Release(&view); return NULL; } result = _PyLong_FromBytes(PyBytes_AS_STRING(bytes), PyBytes_GET_SIZE(bytes), 10); Py_DECREF(bytes); PyBuffer_Release(&view); return result; } return type_error("int() argument must be a string, a bytes-like object " "or a real number, not '%.200s'", o); } PyObject * PyNumber_Float(PyObject *o) { if (o == NULL) { return null_error(); } if (PyFloat_CheckExact(o)) { return Py_NewRef(o); } PyNumberMethods *m = Py_TYPE(o)->tp_as_number; if (m && m->nb_float) { /* This should include subclasses of float */ PyObject *res = m->nb_float(o); assert(_Py_CheckSlotResult(o, "__float__", res != NULL)); if (!res || PyFloat_CheckExact(res)) { return res; } if (!PyFloat_Check(res)) { PyErr_Format(PyExc_TypeError, "%.50s.__float__ returned non-float (type %.50s)", Py_TYPE(o)->tp_name, Py_TYPE(res)->tp_name); Py_DECREF(res); return NULL; } /* Issue #26983: warn if 'res' not of exact type float. */ if (PyErr_WarnFormat(PyExc_DeprecationWarning, 1, "%.50s.__float__ returned non-float (type %.50s). " "The ability to return an instance of a strict subclass of float " "is deprecated, and may be removed in a future version of Python.", Py_TYPE(o)->tp_name, Py_TYPE(res)->tp_name)) { Py_DECREF(res); return NULL; } double val = PyFloat_AS_DOUBLE(res); Py_DECREF(res); return PyFloat_FromDouble(val); } if (m && m->nb_index) { PyObject *res = _PyNumber_Index(o); if (!res) { return NULL; } double val = PyLong_AsDouble(res); Py_DECREF(res); if (val == -1.0 && PyErr_Occurred()) { return NULL; } return PyFloat_FromDouble(val); } /* A float subclass with nb_float == NULL */ if (PyFloat_Check(o)) { return PyFloat_FromDouble(PyFloat_AS_DOUBLE(o)); } return PyFloat_FromString(o); } PyObject * PyNumber_ToBase(PyObject *n, int base) { if (!(base == 2 || base == 8 || base == 10 || base == 16)) { PyErr_SetString(PyExc_SystemError, "PyNumber_ToBase: base must be 2, 8, 10 or 16"); return NULL; } PyObject *index = _PyNumber_Index(n); if (!index) return NULL; PyObject *res = _PyLong_Format(index, base); Py_DECREF(index); return res; } /* Operations on sequences */ int PySequence_Check(PyObject *s) { if (PyDict_Check(s)) return 0; return Py_TYPE(s)->tp_as_sequence && Py_TYPE(s)->tp_as_sequence->sq_item != NULL; } Py_ssize_t PySequence_Size(PyObject *s) { if (s == NULL) { null_error(); return -1; } PySequenceMethods *m = Py_TYPE(s)->tp_as_sequence; if (m && m->sq_length) { Py_ssize_t len = m->sq_length(s); assert(_Py_CheckSlotResult(s, "__len__", len >= 0)); return len; } if (Py_TYPE(s)->tp_as_mapping && Py_TYPE(s)->tp_as_mapping->mp_length) { type_error("%.200s is not a sequence", s); return -1; } type_error("object of type '%.200s' has no len()", s); return -1; } #undef PySequence_Length Py_ssize_t PySequence_Length(PyObject *s) { return PySequence_Size(s); } #define PySequence_Length PySequence_Size PyObject * PySequence_Concat(PyObject *s, PyObject *o) { if (s == NULL || o == NULL) { return null_error(); } PySequenceMethods *m = Py_TYPE(s)->tp_as_sequence; if (m && m->sq_concat) { PyObject *res = m->sq_concat(s, o); assert(_Py_CheckSlotResult(s, "+", res != NULL)); return res; } /* Instances of user classes defining an __add__() method only have an nb_add slot, not an sq_concat slot. So we fall back to nb_add if both arguments appear to be sequences. */ if (PySequence_Check(s) && PySequence_Check(o)) { PyObject *result = BINARY_OP1(s, o, NB_SLOT(nb_add), "+"); if (result != Py_NotImplemented) return result; Py_DECREF(result); } return type_error("'%.200s' object can't be concatenated", s); } PyObject * PySequence_Repeat(PyObject *o, Py_ssize_t count) { if (o == NULL) { return null_error(); } PySequenceMethods *m = Py_TYPE(o)->tp_as_sequence; if (m && m->sq_repeat) { PyObject *res = m->sq_repeat(o, count); assert(_Py_CheckSlotResult(o, "*", res != NULL)); return res; } /* Instances of user classes defining a __mul__() method only have an nb_multiply slot, not an sq_repeat slot. so we fall back to nb_multiply if o appears to be a sequence. */ if (PySequence_Check(o)) { PyObject *n, *result; n = PyLong_FromSsize_t(count); if (n == NULL) return NULL; result = BINARY_OP1(o, n, NB_SLOT(nb_multiply), "*"); Py_DECREF(n); if (result != Py_NotImplemented) return result; Py_DECREF(result); } return type_error("'%.200s' object can't be repeated", o); } PyObject * PySequence_InPlaceConcat(PyObject *s, PyObject *o) { if (s == NULL || o == NULL) { return null_error(); } PySequenceMethods *m = Py_TYPE(s)->tp_as_sequence; if (m && m->sq_inplace_concat) { PyObject *res = m->sq_inplace_concat(s, o); assert(_Py_CheckSlotResult(s, "+=", res != NULL)); return res; } if (m && m->sq_concat) { PyObject *res = m->sq_concat(s, o); assert(_Py_CheckSlotResult(s, "+", res != NULL)); return res; } if (PySequence_Check(s) && PySequence_Check(o)) { PyObject *result = BINARY_IOP1(s, o, NB_SLOT(nb_inplace_add), NB_SLOT(nb_add), "+="); if (result != Py_NotImplemented) return result; Py_DECREF(result); } return type_error("'%.200s' object can't be concatenated", s); } PyObject * PySequence_InPlaceRepeat(PyObject *o, Py_ssize_t count) { if (o == NULL) { return null_error(); } PySequenceMethods *m = Py_TYPE(o)->tp_as_sequence; if (m && m->sq_inplace_repeat) { PyObject *res = m->sq_inplace_repeat(o, count); assert(_Py_CheckSlotResult(o, "*=", res != NULL)); return res; } if (m && m->sq_repeat) { PyObject *res = m->sq_repeat(o, count); assert(_Py_CheckSlotResult(o, "*", res != NULL)); return res; } if (PySequence_Check(o)) { PyObject *n, *result; n = PyLong_FromSsize_t(count); if (n == NULL) return NULL; result = BINARY_IOP1(o, n, NB_SLOT(nb_inplace_multiply), NB_SLOT(nb_multiply), "*="); Py_DECREF(n); if (result != Py_NotImplemented) return result; Py_DECREF(result); } return type_error("'%.200s' object can't be repeated", o); } PyObject * PySequence_GetItem(PyObject *s, Py_ssize_t i) { if (s == NULL) { return null_error(); } PySequenceMethods *m = Py_TYPE(s)->tp_as_sequence; if (m && m->sq_item) { if (i < 0) { if (m->sq_length) { Py_ssize_t l = (*m->sq_length)(s); assert(_Py_CheckSlotResult(s, "__len__", l >= 0)); if (l < 0) { return NULL; } i += l; } } PyObject *res = m->sq_item(s, i); assert(_Py_CheckSlotResult(s, "__getitem__", res != NULL)); return res; } if (Py_TYPE(s)->tp_as_mapping && Py_TYPE(s)->tp_as_mapping->mp_subscript) { return type_error("%.200s is not a sequence", s); } return type_error("'%.200s' object does not support indexing", s); } PyObject * PySequence_GetSlice(PyObject *s, Py_ssize_t i1, Py_ssize_t i2) { if (!s) { return null_error(); } PyMappingMethods *mp = Py_TYPE(s)->tp_as_mapping; if (mp && mp->mp_subscript) { PyObject *slice = _PySlice_FromIndices(i1, i2); if (!slice) { return NULL; } PyObject *res = mp->mp_subscript(s, slice); assert(_Py_CheckSlotResult(s, "__getitem__", res != NULL)); Py_DECREF(slice); return res; } return type_error("'%.200s' object is unsliceable", s); } int PySequence_SetItem(PyObject *s, Py_ssize_t i, PyObject *o) { if (s == NULL) { null_error(); return -1; } PySequenceMethods *m = Py_TYPE(s)->tp_as_sequence; if (m && m->sq_ass_item) { if (i < 0) { if (m->sq_length) { Py_ssize_t l = (*m->sq_length)(s); assert(_Py_CheckSlotResult(s, "__len__", l >= 0)); if (l < 0) { return -1; } i += l; } } int res = m->sq_ass_item(s, i, o); assert(_Py_CheckSlotResult(s, "__setitem__", res >= 0)); return res; } if (Py_TYPE(s)->tp_as_mapping && Py_TYPE(s)->tp_as_mapping->mp_ass_subscript) { type_error("%.200s is not a sequence", s); return -1; } type_error("'%.200s' object does not support item assignment", s); return -1; } int PySequence_DelItem(PyObject *s, Py_ssize_t i) { if (s == NULL) { null_error(); return -1; } PySequenceMethods *m = Py_TYPE(s)->tp_as_sequence; if (m && m->sq_ass_item) { if (i < 0) { if (m->sq_length) { Py_ssize_t l = (*m->sq_length)(s); assert(_Py_CheckSlotResult(s, "__len__", l >= 0)); if (l < 0) { return -1; } i += l; } } int res = m->sq_ass_item(s, i, (PyObject *)NULL); assert(_Py_CheckSlotResult(s, "__delitem__", res >= 0)); return res; } if (Py_TYPE(s)->tp_as_mapping && Py_TYPE(s)->tp_as_mapping->mp_ass_subscript) { type_error("%.200s is not a sequence", s); return -1; } type_error("'%.200s' object doesn't support item deletion", s); return -1; } int PySequence_SetSlice(PyObject *s, Py_ssize_t i1, Py_ssize_t i2, PyObject *o) { if (s == NULL) { null_error(); return -1; } PyMappingMethods *mp = Py_TYPE(s)->tp_as_mapping; if (mp && mp->mp_ass_subscript) { PyObject *slice = _PySlice_FromIndices(i1, i2); if (!slice) return -1; int res = mp->mp_ass_subscript(s, slice, o); assert(_Py_CheckSlotResult(s, "__setitem__", res >= 0)); Py_DECREF(slice); return res; } type_error("'%.200s' object doesn't support slice assignment", s); return -1; } int PySequence_DelSlice(PyObject *s, Py_ssize_t i1, Py_ssize_t i2) { if (s == NULL) { null_error(); return -1; } PyMappingMethods *mp = Py_TYPE(s)->tp_as_mapping; if (mp && mp->mp_ass_subscript) { PyObject *slice = _PySlice_FromIndices(i1, i2); if (!slice) { return -1; } int res = mp->mp_ass_subscript(s, slice, NULL); assert(_Py_CheckSlotResult(s, "__delitem__", res >= 0)); Py_DECREF(slice); return res; } type_error("'%.200s' object doesn't support slice deletion", s); return -1; } PyObject * PySequence_Tuple(PyObject *v) { PyObject *it; /* iter(v) */ Py_ssize_t n; /* guess for result tuple size */ PyObject *result = NULL; Py_ssize_t j; if (v == NULL) { return null_error(); } /* Special-case the common tuple and list cases, for efficiency. */ if (PyTuple_CheckExact(v)) { /* Note that we can't know whether it's safe to return a tuple *subclass* instance as-is, hence the restriction to exact tuples here. In contrast, lists always make a copy, so there's no need for exactness below. */ Py_INCREF(v); return v; } if (PyList_CheckExact(v)) return PyList_AsTuple(v); /* Get iterator. */ it = PyObject_GetIter(v); if (it == NULL) return NULL; /* Guess result size and allocate space. */ n = PyObject_LengthHint(v, 10); if (n == -1) goto Fail; result = PyTuple_New(n); if (result == NULL) goto Fail; /* Fill the tuple. */ for (j = 0; ; ++j) { PyObject *item = PyIter_Next(it); if (item == NULL) { if (PyErr_Occurred()) goto Fail; break; } if (j >= n) { size_t newn = (size_t)n; /* The over-allocation strategy can grow a bit faster than for lists because unlike lists the over-allocation isn't permanent -- we reclaim the excess before the end of this routine. So, grow by ten and then add 25%. */ newn += 10u; newn += newn >> 2; if (newn > PY_SSIZE_T_MAX) { /* Check for overflow */ PyErr_NoMemory(); Py_DECREF(item); goto Fail; } n = (Py_ssize_t)newn; if (_PyTuple_Resize(&result, n) != 0) { Py_DECREF(item); goto Fail; } } PyTuple_SET_ITEM(result, j, item); } /* Cut tuple back if guess was too large. */ if (j < n && _PyTuple_Resize(&result, j) != 0) goto Fail; Py_DECREF(it); return result; Fail: Py_XDECREF(result); Py_DECREF(it); return NULL; } PyObject * PySequence_List(PyObject *v) { PyObject *result; /* result list */ PyObject *rv; /* return value from PyList_Extend */ if (v == NULL) { return null_error(); } result = PyList_New(0); if (result == NULL) return NULL; rv = _PyList_Extend((PyListObject *)result, v); if (rv == NULL) { Py_DECREF(result); return NULL; } Py_DECREF(rv); return result; } PyObject * PySequence_Fast(PyObject *v, const char *m) { PyObject *it; if (v == NULL) { return null_error(); } if (PyList_CheckExact(v) || PyTuple_CheckExact(v)) { Py_INCREF(v); return v; } it = PyObject_GetIter(v); if (it == NULL) { PyThreadState *tstate = _PyThreadState_GET(); if (_PyErr_ExceptionMatches(tstate, PyExc_TypeError)) { _PyErr_SetString(tstate, PyExc_TypeError, m); } return NULL; } v = PySequence_List(it); Py_DECREF(it); return v; } /* Iterate over seq. Result depends on the operation: PY_ITERSEARCH_COUNT: -1 if error, else # of times obj appears in seq. PY_ITERSEARCH_INDEX: 0-based index of first occurrence of obj in seq; set ValueError and return -1 if none found; also return -1 on error. Py_ITERSEARCH_CONTAINS: return 1 if obj in seq, else 0; -1 on error. */ Py_ssize_t _PySequence_IterSearch(PyObject *seq, PyObject *obj, int operation) { Py_ssize_t n; int wrapped; /* for PY_ITERSEARCH_INDEX, true iff n wrapped around */ PyObject *it; /* iter(seq) */ if (seq == NULL || obj == NULL) { null_error(); return -1; } it = PyObject_GetIter(seq); if (it == NULL) { if (PyErr_ExceptionMatches(PyExc_TypeError)) { type_error("argument of type '%.200s' is not iterable", seq); } return -1; } n = wrapped = 0; for (;;) { int cmp; PyObject *item = PyIter_Next(it); if (item == NULL) { if (PyErr_Occurred()) goto Fail; break; } cmp = PyObject_RichCompareBool(item, obj, Py_EQ); Py_DECREF(item); if (cmp < 0) goto Fail; if (cmp > 0) { switch (operation) { case PY_ITERSEARCH_COUNT: if (n == PY_SSIZE_T_MAX) { PyErr_SetString(PyExc_OverflowError, "count exceeds C integer size"); goto Fail; } ++n; break; case PY_ITERSEARCH_INDEX: if (wrapped) { PyErr_SetString(PyExc_OverflowError, "index exceeds C integer size"); goto Fail; } goto Done; case PY_ITERSEARCH_CONTAINS: n = 1; goto Done; default: Py_UNREACHABLE(); } } if (operation == PY_ITERSEARCH_INDEX) { if (n == PY_SSIZE_T_MAX) wrapped = 1; ++n; } } if (operation != PY_ITERSEARCH_INDEX) goto Done; PyErr_SetString(PyExc_ValueError, "sequence.index(x): x not in sequence"); /* fall into failure code */ Fail: n = -1; /* fall through */ Done: Py_DECREF(it); return n; } /* Return # of times o appears in s. */ Py_ssize_t PySequence_Count(PyObject *s, PyObject *o) { return _PySequence_IterSearch(s, o, PY_ITERSEARCH_COUNT); } /* Return -1 if error; 1 if ob in seq; 0 if ob not in seq. * Use sq_contains if possible, else defer to _PySequence_IterSearch(). */ int PySequence_Contains(PyObject *seq, PyObject *ob) { PySequenceMethods *sqm = Py_TYPE(seq)->tp_as_sequence; if (sqm != NULL && sqm->sq_contains != NULL) { int res = (*sqm->sq_contains)(seq, ob); assert(_Py_CheckSlotResult(seq, "__contains__", res >= 0)); return res; } Py_ssize_t result = _PySequence_IterSearch(seq, ob, PY_ITERSEARCH_CONTAINS); return Py_SAFE_DOWNCAST(result, Py_ssize_t, int); } /* Backwards compatibility */ #undef PySequence_In int PySequence_In(PyObject *w, PyObject *v) { return PySequence_Contains(w, v); } Py_ssize_t PySequence_Index(PyObject *s, PyObject *o) { return _PySequence_IterSearch(s, o, PY_ITERSEARCH_INDEX); } /* Operations on mappings */ int PyMapping_Check(PyObject *o) { return o && Py_TYPE(o)->tp_as_mapping && Py_TYPE(o)->tp_as_mapping->mp_subscript; } Py_ssize_t PyMapping_Size(PyObject *o) { if (o == NULL) { null_error(); return -1; } PyMappingMethods *m = Py_TYPE(o)->tp_as_mapping; if (m && m->mp_length) { Py_ssize_t len = m->mp_length(o); assert(_Py_CheckSlotResult(o, "__len__", len >= 0)); return len; } if (Py_TYPE(o)->tp_as_sequence && Py_TYPE(o)->tp_as_sequence->sq_length) { type_error("%.200s is not a mapping", o); return -1; } /* PyMapping_Size() can be called from PyObject_Size(). */ type_error("object of type '%.200s' has no len()", o); return -1; } #undef PyMapping_Length Py_ssize_t PyMapping_Length(PyObject *o) { return PyMapping_Size(o); } #define PyMapping_Length PyMapping_Size PyObject * PyMapping_GetItemString(PyObject *o, const char *key) { PyObject *okey, *r; if (key == NULL) { return null_error(); } okey = PyUnicode_FromString(key); if (okey == NULL) return NULL; r = PyObject_GetItem(o, okey); Py_DECREF(okey); return r; } int PyMapping_SetItemString(PyObject *o, const char *key, PyObject *value) { PyObject *okey; int r; if (key == NULL) { null_error(); return -1; } okey = PyUnicode_FromString(key); if (okey == NULL) return -1; r = PyObject_SetItem(o, okey, value); Py_DECREF(okey); return r; } int PyMapping_HasKeyString(PyObject *o, const char *key) { PyObject *v; v = PyMapping_GetItemString(o, key); if (v) { Py_DECREF(v); return 1; } PyErr_Clear(); return 0; } int PyMapping_HasKey(PyObject *o, PyObject *key) { PyObject *v; v = PyObject_GetItem(o, key); if (v) { Py_DECREF(v); return 1; } PyErr_Clear(); return 0; } /* This function is quite similar to PySequence_Fast(), but specialized to be a helper for PyMapping_Keys(), PyMapping_Items() and PyMapping_Values(). */ static PyObject * method_output_as_list(PyObject *o, _Py_Identifier *meth_id) { PyObject *it, *result, *meth_output; assert(o != NULL); meth_output = _PyObject_CallMethodIdNoArgs(o, meth_id); if (meth_output == NULL || PyList_CheckExact(meth_output)) { return meth_output; } it = PyObject_GetIter(meth_output); if (it == NULL) { PyThreadState *tstate = _PyThreadState_GET(); if (_PyErr_ExceptionMatches(tstate, PyExc_TypeError)) { _PyErr_Format(tstate, PyExc_TypeError, "%.200s.%U() returned a non-iterable (type %.200s)", Py_TYPE(o)->tp_name, _PyUnicode_FromId(meth_id), Py_TYPE(meth_output)->tp_name); } Py_DECREF(meth_output); return NULL; } Py_DECREF(meth_output); result = PySequence_List(it); Py_DECREF(it); return result; } PyObject * PyMapping_Keys(PyObject *o) { _Py_IDENTIFIER(keys); if (o == NULL) { return null_error(); } if (PyDict_CheckExact(o)) { return PyDict_Keys(o); } return method_output_as_list(o, &PyId_keys); } PyObject * PyMapping_Items(PyObject *o) { _Py_IDENTIFIER(items); if (o == NULL) { return null_error(); } if (PyDict_CheckExact(o)) { return PyDict_Items(o); } return method_output_as_list(o, &PyId_items); } PyObject * PyMapping_Values(PyObject *o) { _Py_IDENTIFIER(values); if (o == NULL) { return null_error(); } if (PyDict_CheckExact(o)) { return PyDict_Values(o); } return method_output_as_list(o, &PyId_values); } /* isinstance(), issubclass() */ /* abstract_get_bases() has logically 4 return states: * * 1. getattr(cls, '__bases__') could raise an AttributeError * 2. getattr(cls, '__bases__') could raise some other exception * 3. getattr(cls, '__bases__') could return a tuple * 4. getattr(cls, '__bases__') could return something other than a tuple * * Only state #3 is a non-error state and only it returns a non-NULL object * (it returns the retrieved tuple). * * Any raised AttributeErrors are masked by clearing the exception and * returning NULL. If an object other than a tuple comes out of __bases__, * then again, the return value is NULL. So yes, these two situations * produce exactly the same results: NULL is returned and no error is set. * * If some exception other than AttributeError is raised, then NULL is also * returned, but the exception is not cleared. That's because we want the * exception to be propagated along. * * Callers are expected to test for PyErr_Occurred() when the return value * is NULL to decide whether a valid exception should be propagated or not. * When there's no exception to propagate, it's customary for the caller to * set a TypeError. */ static PyObject * abstract_get_bases(PyObject *cls) { _Py_IDENTIFIER(__bases__); PyObject *bases; (void)_PyObject_LookupAttrId(cls, &PyId___bases__, &bases); if (bases != NULL && !PyTuple_Check(bases)) { Py_DECREF(bases); return NULL; } return bases; } static int abstract_issubclass(PyObject *derived, PyObject *cls) { PyObject *bases = NULL; Py_ssize_t i, n; int r = 0; while (1) { if (derived == cls) { Py_XDECREF(bases); /* See below comment */ return 1; } /* Use XSETREF to drop bases reference *after* finishing with derived; bases might be the only reference to it. XSETREF is used instead of SETREF, because bases is NULL on the first iteration of the loop. */ Py_XSETREF(bases, abstract_get_bases(derived)); if (bases == NULL) { if (PyErr_Occurred()) return -1; return 0; } n = PyTuple_GET_SIZE(bases); if (n == 0) { Py_DECREF(bases); return 0; } /* Avoid recursivity in the single inheritance case */ if (n == 1) { derived = PyTuple_GET_ITEM(bases, 0); continue; } for (i = 0; i < n; i++) { r = abstract_issubclass(PyTuple_GET_ITEM(bases, i), cls); if (r != 0) break; } Py_DECREF(bases); return r; } } static int check_class(PyObject *cls, const char *error) { PyObject *bases = abstract_get_bases(cls); if (bases == NULL) { /* Do not mask errors. */ PyThreadState *tstate = _PyThreadState_GET(); if (!_PyErr_Occurred(tstate)) { _PyErr_SetString(tstate, PyExc_TypeError, error); } return 0; } Py_DECREF(bases); return -1; } static int object_isinstance(PyObject *inst, PyObject *cls) { PyObject *icls; int retval; _Py_IDENTIFIER(__class__); if (PyType_Check(cls)) { retval = PyObject_TypeCheck(inst, (PyTypeObject *)cls); if (retval == 0) { retval = _PyObject_LookupAttrId(inst, &PyId___class__, &icls); if (icls != NULL) { if (icls != (PyObject *)(Py_TYPE(inst)) && PyType_Check(icls)) { retval = PyType_IsSubtype( (PyTypeObject *)icls, (PyTypeObject *)cls); } else { retval = 0; } Py_DECREF(icls); } } } else { if (!check_class(cls, "isinstance() arg 2 must be a type, a tuple of types or a union")) return -1; retval = _PyObject_LookupAttrId(inst, &PyId___class__, &icls); if (icls != NULL) { retval = abstract_issubclass(icls, cls); Py_DECREF(icls); } } return retval; } static int object_recursive_isinstance(PyThreadState *tstate, PyObject *inst, PyObject *cls) { _Py_IDENTIFIER(__instancecheck__); /* Quick test for an exact match */ if (Py_IS_TYPE(inst, (PyTypeObject *)cls)) { return 1; } /* We know what type's __instancecheck__ does. */ if (PyType_CheckExact(cls)) { return object_isinstance(inst, cls); } if (PyTuple_Check(cls)) { /* Not a general sequence -- that opens up the road to recursion and stack overflow. */ if (_Py_EnterRecursiveCall(tstate, " in __instancecheck__")) { return -1; } Py_ssize_t n = PyTuple_GET_SIZE(cls); int r = 0; for (Py_ssize_t i = 0; i < n; ++i) { PyObject *item = PyTuple_GET_ITEM(cls, i); r = object_recursive_isinstance(tstate, inst, item); if (r != 0) { /* either found it, or got an error */ break; } } _Py_LeaveRecursiveCall(tstate); return r; } PyObject *checker = _PyObject_LookupSpecial(cls, &PyId___instancecheck__); if (checker != NULL) { if (_Py_EnterRecursiveCall(tstate, " in __instancecheck__")) { Py_DECREF(checker); return -1; } PyObject *res = PyObject_CallOneArg(checker, inst); _Py_LeaveRecursiveCall(tstate); Py_DECREF(checker); if (res == NULL) { return -1; } int ok = PyObject_IsTrue(res); Py_DECREF(res); return ok; } else if (_PyErr_Occurred(tstate)) { return -1; } /* cls has no __instancecheck__() method */ return object_isinstance(inst, cls); } int PyObject_IsInstance(PyObject *inst, PyObject *cls) { PyThreadState *tstate = _PyThreadState_GET(); return object_recursive_isinstance(tstate, inst, cls); } static int recursive_issubclass(PyObject *derived, PyObject *cls) { if (PyType_Check(cls) && PyType_Check(derived)) { /* Fast path (non-recursive) */ return PyType_IsSubtype((PyTypeObject *)derived, (PyTypeObject *)cls); } if (!check_class(derived, "issubclass() arg 1 must be a class")) return -1; PyTypeObject *type = Py_TYPE(cls); int is_union = (PyType_Check(type) && type == &_Py_UnionType); if (!is_union && !check_class(cls, "issubclass() arg 2 must be a class," " a tuple of classes, or a union.")) { return -1; } return abstract_issubclass(derived, cls); } static int object_issubclass(PyThreadState *tstate, PyObject *derived, PyObject *cls) { _Py_IDENTIFIER(__subclasscheck__); PyObject *checker; /* We know what type's __subclasscheck__ does. */ if (PyType_CheckExact(cls)) { /* Quick test for an exact match */ if (derived == cls) return 1; return recursive_issubclass(derived, cls); } if (PyTuple_Check(cls)) { if (_Py_EnterRecursiveCall(tstate, " in __subclasscheck__")) { return -1; } Py_ssize_t n = PyTuple_GET_SIZE(cls); int r = 0; for (Py_ssize_t i = 0; i < n; ++i) { PyObject *item = PyTuple_GET_ITEM(cls, i); r = object_issubclass(tstate, derived, item); if (r != 0) /* either found it, or got an error */ break; } _Py_LeaveRecursiveCall(tstate); return r; } checker = _PyObject_LookupSpecial(cls, &PyId___subclasscheck__); if (checker != NULL) { int ok = -1; if (_Py_EnterRecursiveCall(tstate, " in __subclasscheck__")) { Py_DECREF(checker); return ok; } PyObject *res = PyObject_CallOneArg(checker, derived); _Py_LeaveRecursiveCall(tstate); Py_DECREF(checker); if (res != NULL) { ok = PyObject_IsTrue(res); Py_DECREF(res); } return ok; } else if (_PyErr_Occurred(tstate)) { return -1; } /* Probably never reached anymore. */ return recursive_issubclass(derived, cls); } int PyObject_IsSubclass(PyObject *derived, PyObject *cls) { PyThreadState *tstate = _PyThreadState_GET(); return object_issubclass(tstate, derived, cls); } int _PyObject_RealIsInstance(PyObject *inst, PyObject *cls) { return object_isinstance(inst, cls); } int _PyObject_RealIsSubclass(PyObject *derived, PyObject *cls) { return recursive_issubclass(derived, cls); } PyObject * PyObject_GetIter(PyObject *o) { PyTypeObject *t = Py_TYPE(o); getiterfunc f; f = t->tp_iter; if (f == NULL) { if (PySequence_Check(o)) return PySeqIter_New(o); return type_error("'%.200s' object is not iterable", o); } else { PyObject *res = (*f)(o); if (res != NULL && !PyIter_Check(res)) { PyErr_Format(PyExc_TypeError, "iter() returned non-iterator " "of type '%.100s'", Py_TYPE(res)->tp_name); Py_DECREF(res); res = NULL; } return res; } } #undef PyIter_Check int PyIter_Check(PyObject *obj) { return Py_TYPE(obj)->tp_iternext != NULL && Py_TYPE(obj)->tp_iternext != &_PyObject_NextNotImplemented; } /* Return next item. * If an error occurs, return NULL. PyErr_Occurred() will be true. * If the iteration terminates normally, return NULL and clear the * PyExc_StopIteration exception (if it was set). PyErr_Occurred() * will be false. * Else return the next object. PyErr_Occurred() will be false. */ PyObject * PyIter_Next(PyObject *iter) { PyObject *result; result = (*Py_TYPE(iter)->tp_iternext)(iter); if (result == NULL) { PyThreadState *tstate = _PyThreadState_GET(); if (_PyErr_Occurred(tstate) && _PyErr_ExceptionMatches(tstate, PyExc_StopIteration)) { _PyErr_Clear(tstate); } } return result; } PySendResult PyIter_Send(PyObject *iter, PyObject *arg, PyObject **result) { _Py_IDENTIFIER(send); assert(arg != NULL); assert(result != NULL); if (PyType_HasFeature(Py_TYPE(iter), Py_TPFLAGS_HAVE_AM_SEND)) { assert (Py_TYPE(iter)->tp_as_async != NULL); assert (Py_TYPE(iter)->tp_as_async->am_send != NULL); PySendResult res = Py_TYPE(iter)->tp_as_async->am_send(iter, arg, result); assert(_Py_CheckSlotResult(iter, "am_send", res != PYGEN_ERROR)); return res; } if (arg == Py_None && PyIter_Check(iter)) { *result = Py_TYPE(iter)->tp_iternext(iter); } else { *result = _PyObject_CallMethodIdOneArg(iter, &PyId_send, arg); } if (*result != NULL) { return PYGEN_NEXT; } if (_PyGen_FetchStopIterationValue(result) == 0) { return PYGEN_RETURN; } return PYGEN_ERROR; } /* * Flatten a sequence of bytes() objects into a C array of * NULL terminated string pointers with a NULL char* terminating the array. * (ie: an argv or env list) * * Memory allocated for the returned list is allocated using PyMem_Malloc() * and MUST be freed by _Py_FreeCharPArray(). */ char *const * _PySequence_BytesToCharpArray(PyObject* self) { char **array; Py_ssize_t i, argc; PyObject *item = NULL; Py_ssize_t size; argc = PySequence_Size(self); if (argc == -1) return NULL; assert(argc >= 0); if ((size_t)argc > (PY_SSIZE_T_MAX-sizeof(char *)) / sizeof(char *)) { PyErr_NoMemory(); return NULL; } array = PyMem_Malloc((argc + 1) * sizeof(char *)); if (array == NULL) { PyErr_NoMemory(); return NULL; } for (i = 0; i < argc; ++i) { char *data; item = PySequence_GetItem(self, i); if (item == NULL) { /* NULL terminate before freeing. */ array[i] = NULL; goto fail; } /* check for embedded null bytes */ if (PyBytes_AsStringAndSize(item, &data, NULL) < 0) { /* NULL terminate before freeing. */ array[i] = NULL; goto fail; } size = PyBytes_GET_SIZE(item) + 1; array[i] = PyMem_Malloc(size); if (!array[i]) { PyErr_NoMemory(); goto fail; } memcpy(array[i], data, size); Py_DECREF(item); } array[argc] = NULL; return array; fail: Py_XDECREF(item); _Py_FreeCharPArray(array); return NULL; } /* Free's a NULL terminated char** array of C strings. */ void _Py_FreeCharPArray(char *const array[]) { Py_ssize_t i; for (i = 0; array[i] != NULL; ++i) { PyMem_Free(array[i]); } PyMem_Free((void*)array); }